\(\Delta T_b\,=\,K_b\,.\,m\)
Hence , We have \(m\, = \frac{{\Delta {T_f}}}{{{K_f}}}\, = \,\frac{{\Delta {T_b}}}{{{K_b}}}\)
\(\Delta {T_f}\, = \,\Delta {T_b}\frac{{{K_f}}}{{{K_b}}}\)
\( \Rightarrow \,[\,\Delta {T_b}\, = \,100.18\, - \,100\, = \,0.18\,{\,^o}C]\)
\( = \,0.18\, \times \,\frac{{1.86}}{{0.512}}\, = 0.654{\,^o}C\)
As the Freezing Point of pure water is \(0\,^oC\)
\(\Delta {T_f}\, = \,0\, - \,{T_f}\)
\(0.654\, = \,0\, - \,{T_f}\)
\(\therefore {T_f}\, = \,\, - \,0.654\)
Thus the freezing point of solution will be \( - \,0.654\,{\,^o}C\)
(આપેલ, $K_f = 5\,K\, kg\,mol^{-1},$ બેન્ઝોઇક એસિડનું મોલર દળ $= 122\,g\,mol^{-1}$ )
[ આપેલ : પાણીનો મોલલ ઉત્કલનબિંદુ ઉન્નયન અચળાંક $\left(\mathrm{K}_{\mathrm{b}}\right)=0.52 \mathrm{~K} . \mathrm{kg} \mathrm{mol}^{-1}$,
$1 \mathrm{~atm}$ દબાણ $=760 \mathrm{~mm} \mathrm{Hg}$, પાણીનું મોલર દળ $\left.=18 \mathrm{~g} \mathrm{~mol}^{-1}\right]$