यदि A = $\left[\begin{array}{cc} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{array}\right]$ तथा I कोटि 2 का एक तत्समक आव्यूह है। तो सिद्ध कीजिए कि I + A = (I - A)$\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]$
Exercise-3.2-18
Download our app for free and get started
यहाँ, A = $ \left[\begin{array}{rr} 0 & -t \\ t & 0 \end{array}\right]$, जहाँ t = tan $\left(\frac{\alpha}{2}\right)$ अब, cos $ \alpha$ = $\frac{1-\tan ^{2}\left(\frac{\alpha}{2}\right)}{1+\tan ^{2}\left(\frac{\alpha}{2}\right)}$ = $\frac{1-t^{2}}{1+t^{2}}$ तथा sin $ \alpha$ = $\frac{2 \tan \left(\frac{\alpha}{2}\right)}{1+\tan ^{2}\left(\frac{\alpha}{2}\right)}$ = $\frac{2 t}{1+t^{2}}$ दायाँ पक्ष = (I - A) $\left[\begin{array}{rr} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]$=$ \left[\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)-\left(\begin{array}{rr} 0 & -t \\ +t & 0 \end{array}\right)\right]$ $\left[\begin{array}{cc} \frac{1-t^{2}}{1+t^{2}} & \frac{-2 t}{1+t^{2}} \\ \frac{2 t}{1+t^{2}} & \frac{1-t^{2}}{1+t^{2}} \end{array}\right]$ = $ \left[\begin{array}{rr} 1 & t \\ -t & 1 \end{array}\right]$ $\left[\begin{array}{cc} \frac{1-t^{2}}{1+t^{2}} & \frac{-2 t}{1+t^{2}} \\ 2 t & 1-t^{2} \end{array}\right]$= $ \left[\begin{array}{cc} \frac{1-t^{2}+2 t^{2}}{1+t^{2}} & \frac{-2 t+t\left(1-t^{2}\right)}{1+t^{2}} \\ -t\left(1-t^{2}\right)+2 t & \frac{2 t^{2}+1-t^{2}}{1-t} \end{array}\right]$ = $\left[\begin{array}{cc} \frac{1+t^{2}}{1+t^{2}} & \frac{-2 t+t-t^{3}}{1+t^{2}} \\ \frac{-t+t^{3}+2 t}{1+t^{2}} & \frac{2 t^{2}+1-t^{2}}{1+t^{2}} \end{array}\right]$ = $\left[\begin{array}{cc} \frac{1+t^{2}}{1+t^{2}} & \frac{-t\left(1+t^{2}\right)}{1+t^{2}} \\ \frac{t\left(1+t^{2}\right)}{1+t^{2}} & \frac{1+t^{2}}{1+t^{2}} \end{array}\right]$ = $\left[\begin{array}{cc} 1 & -t \\ t & 1 \end{array}\right]$ तथा बायाँ पक्ष = $ \left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ + $\left[\begin{array}{rr}0 & -t \\ t & 0\end{array}\right]$ = $ \left[\begin{array}{rr}0+1 & -t+0 \\ t+0 & 0+1\end{array}\right]$ =$ \left[\begin{array}{rr}1 & -t \\ t & 1\end{array}\right]$ = दायाँ पक्ष t का मान दोनों पक्षों में रखने पर, $ \left[\begin{array}{cr} 1 & -\tan \left(\frac{\alpha}{2}\right) \\ \tan \left(\frac{\alpha}{2}\right) & 1 \end{array}\right]$ = $\left[\begin{array}{cr} 1 & -\tan \left(\frac{\alpha}{2}\right) \\ \tan \left(\frac{\alpha}{2}\right) & 1 \end{array}\right] $ $\therefore $ बायाँ पक्ष = दायाँ पक्ष
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
यदि A = $ \left[\begin{array}{r} -2 \\ 4 \\ 5 \end{array}\right]$, B = $\left[\begin{array}{lll} 1 & 3 & -6 \end{array}\right] $ है तो सत्यापित कीजिए (AB)$^{\prime}$ = B$^{\prime}$A$^{\prime} $ है।
X तथा Y ज्ञात कीजिए यदि X + Y = $ \left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ तथा X - Y = $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$