Let there by \(n\) moles of gas.
Mass of gas \(=40 n g\) or \(\frac{40 n}{1000}\) or \(0.04 n kg\)
\(\text { K.E. of gas in container }=\frac{1}{2} \times 0.04 n \times(200)^2\)
\(=0.02 \times n \times 4 \times 10^4\)
\(=8 \times 10^2 \times n J\)
Now heat capacity of gas \((C)=\frac{f}{2} n R\)
or \(C=\frac{5}{2} R \times n\)
or \(C \Delta T=8 \times 10^2 \times n\)
or \(\frac{5}{2} \times R \times n \Delta T=8 \times 10^2 \times n\)
\(\Delta T=\frac{8 \times 10^2}{R} \times \frac{2}{5}\)
\(\Delta T=\frac{16}{5} \times 10^2=\frac{320}{R}{ }^{\circ} C\)