Heat supplied \(=\Delta U=U_{\text {final }}-U_{\text {initial }}\)
Total internal energy initially \(=\frac{5}{2} N R T\) [Only diatomic gas is present]
Total internal energy when
' \(n\) ' moles get dissociated \(=\frac{5}{2}(N-n) R T+\frac{3}{2}(2 n) R T\) [diatomic and monoatomic both are present]
\(\Delta U=\left\{\frac{5}{2}(N-n) R T+\frac{3}{2}(2 n) R T\right\}-\frac{5}{2} N R T\)
Solving this we get
\(\Delta U=\frac{1}{2} n R T\)
\(\therefore\) Heat supplied is \(\frac{1}{2} n R T\).