एक बस किसी दूरी का एक तिहाई 10 किमी/घंटा वेग से, दूसरा तिहाई भाग 40 किमी/घंटा वेग से तथा तीसरा तिहाई भाग 60 किमी/घंटा वेग से चलती है। बस का औसत वेग होगा-
[1991]
Download our app for free and get started
(c)
$
\begin{aligned}
& =\frac{ s }{\frac{ s }{30}+\frac{ s }{60}+\frac{ s }{180}} \\
& =\frac{ s }{\frac{ s }{18}}=18 km/h
\end{aligned}
$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक कण सीधी रेखा $OX$ के साथ चलता है। $t$ समय (सेकंडो में) पर कण की $O$ से दूरी (मीटर में) इस प्रकार है: $x =40+12 t - t ^3$ । कण को विराम में आने के लिए कितनी दूरी तय करनी पड़ेगी?
एक सरल रेखा के अनुदिश, किसी कण की गति को समीकरण, $x=8+12 t-t^3$ द्वारा परिभाषित (प्रकट) किया जाता है। जहाँ, $x$ मीटर में तथा $t$ सेकण्ड में है। वेग शून्य होने पर कण का मंदन है :
$x$-अक्ष की दिशा में गतिमान एक कण के समय $t$ पर त्वरण $f$ को $f = f _0\left(1-\frac{ t }{ T }\right)$, समीकरण द्वारा व्यक्त किया जा सकता है, जबकि $f _0$ और $T$ नियतांक हैं। $t=0$ पर इस कण का वेग शून्य है। समय $t=0$ और उस क्षण के बीच अन्तराल में जबकि $f =0$ होगा, कण का वेग $\left( v _{ x }\right)$ होगा-
पृथ्वी तल से 5 मीटर ऊंचाई पर स्थित एक टोटी से पानी की बूंदें बराबर समयान्तर पर गिरती है। पानी की तीसरी बूंद टोटी से तब निकलती है जब पहली बूंद पृथ्वी तल को छूती है। इस क्षण दूसरी बूंद पृथ्वी तल से कितनी ऊंचाई पर है? $( g =10$ मी/सेकंड 2$)$
एक आदमी कुछ दो गेंदो को एक समान गति से 2 सेकंड के अंतराल पर एक-एक करके ऊपर फेंकता है। वह गेंदों को किस वेग से फेंके ताकि किसी भी समय दो से अधिक गेंदे हवा में रहे? (दिया है $g =9.8$ मी/सेकंड 2 )