एक कण दो परस्पर लम्बवत् सरल आवर्त गतियाँ इस प्रकार करते हैं कि इसके $x$ तथा $y$ अक्ष इस प्रकार दिये जाते है : $x =2 \sin \omega t ; \quad y =2 \sin A \left(\omega t +\frac{\pi}{4}\right)$ कण का पथ होगा
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक कण पर दो सरल आवर्तगतियां है। ये है$x = A \cos (\omega t +\delta) ; y = A \cos (\omega t +\alpha)$ जब $\delta=\alpha+\frac{\pi}{2}$, तो परिणामी गति होगी $-$
दो द्रव्यमान $M _{ A }$ तथा $M _{ B }$ को दो तारों, जिनकी लम्बाइयां $L _{ A }$ तथा $L _{ B }$ है, से लटकाने पर सरल आवर्तगतियां करते है। यदि इनकी आवर्तियों में संबंध $f _{ A }=2 f _{ B }$ हो तो
किसी सरल आर्वत तरंग का समीकरण $ y=3 \sin \frac{\pi}{2}(50 t-x) $ जहाँ $x$ तथा $y$ मीटर में और $t$ सेकंड में है तो, अधिकतम कण $-$ वेग तथा तरंग वेग का अनुपात होगा :