यदि सरल लोलक की लम्बाई $2 \%$ बढ़ा दी जाए तो उसका आवर्तकाल
[1997]
Download our app for free and get started
$(c)\ T =2 \pi \sqrt{\frac{\ell}{ g }}$
$\frac{\Delta T }{ T } \times 100=\frac{1}{2} \frac{\Delta \ell}{\ell} \times 100$
$=\frac{1}{2} \times 2 \times 2100 \%$
$=1 \% $
अत : आवर्तकाल $1 \%$ बढ़ेगा।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक बिन्दु सरल आवर्त दोलन करता है जिसका आवर्तकाल $T$ और चलन का समीकरण $x = a \sin (\omega t +\pi / 6)$ है। आवर्तकाल के किस अंश के पश्चात् बिन्दु का वेग उसके अधिकतम वेग का आधा होगा ?
एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक 200 न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये?( मान लो $g =10$ मी $/$ से $^2$ )
किसी पिण्ड $($वस्तु$)$ के चिकेने क्षैतिज पृष्ठ $($सतह$)$ पर दोलनों के समीकरण को $X=A \cos (\omega t)$ द्वारा निरूपित किया जाता है, जहां $X=t$ समय पर विस्थापन $\omega=$ दोलनों की आवृत्ति तो, $t$ के साथ $a$ के विचलन $($परिवर्तन$)$ को कौन $-$ सा ग्राफ $($आलेख$)$ सही रूप में दर्शाता है ?
किसी कण को प्रदर्शित करने वाले निम्नलिखित फलनों में कौन से फलन सरल आवर्त गति को निरूपित करते है?
(A) $y=\sin \omega t-\cos \omega t$
(B) $y=\sin ^3 \omega t$
(C) $y=5 \cos \left(\frac{3 \pi}{4}-3 \omega t\right)$
(D) $y =1+\omega t +\omega^2 t ^2$