$5$ सेमी आयाम की सरल आवर्त गति करते एक कण की अधिकतम चाल $31.4$ सेमी./से है। इसके कम्पन की आवृत्ति है
[2005]
Download our app for free and get started
$(d)$ सरल आवर्त्त गति में,
$ v _{\max }= A \omega= A (2 \pi f )$
$f =\frac{ v _{\max }}{2 \pi A }=\frac{31.4}{2(3.14) \times 5}=1 Hz $
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक 200 न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये?( मान लो $g =10$ मी $/$ से $^2$ )
एक सरल लोलक का आयाम तथा कोणीय वेग क्रमशः $a$ तथा $\omega$ है। माध्य स्थिति से $x$ दूरी पर इसकी गतिज ऊर्जा $T$ तथा स्थितिज ऊर्जा $V$ है तो $T$ तथा $V$ का अनुपात होगा
किसी कण को प्रदर्शित करने वाले निम्नलिखित फलनों में कौन से फलन सरल आवर्त गति को निरूपित करते है?
(A) $y=\sin \omega t-\cos \omega t$
(B) $y=\sin ^3 \omega t$
(C) $y=5 \cos \left(\frac{3 \pi}{4}-3 \omega t\right)$
(D) $y =1+\omega t +\omega^2 t ^2$
एक कण दो परस्पर लम्बवत् सरल आवर्त गतियाँ इस प्रकार करते हैं कि इसके $x$ तथा $y$ अक्ष इस प्रकार दिये जाते है : $x =2 \sin \omega t ; \quad y =2 \sin A \left(\omega t +\frac{\pi}{4}\right)$ कण का पथ होगा
दो कण, एक दूसरे के निकट स्थित, दो समान्तर सरल रेखाओं के अनुदिश, समान आवृति और आयाम से दोलन कर रहे हैं। जब उनका विस्थापन उनके आयाम का आधा $(1 / 2)$ होता है तो वे एक दूसरे से विपरीत दिशा में गति कर रहे होते हैं। दोनों कणों की माध्य स्थिति, उनके मार्गों की लम्बवत् एक सरल रेखा पर स्थित है। तो कलान्तर है :