\(r + i = 90^\circ ==> i = 90^\circ -r\)
For ray not to emerge from curved surface \(i > C\)
\( ==> sin\, i > sin \,C ==> sin (90° -r) > sin C\)
\(==> cos\, r > sin\, C \)
==> \(\sqrt {1 - {{\sin }^2}r} > \frac{1}{n}\) \(\left\{ {\,\sin C = \frac{1}{n}} \right\}\)
==> \(1 - \frac{{{{\sin }^2}\alpha }}{{{n^2}}} > \frac{1}{{{n^2}}}\)==> \(1 > \frac{1}{{{n^2}}}(1 + {\sin ^2}\alpha )\)
==> \({n^2} > 1 + {\sin ^2}\alpha \) ==> \(n > \sqrt 2 \) {\(sin i → 1\)}
==> Least value \( = \sqrt 2 \)