Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
यदि $a, b, c$ धनात्मक और भिन्न हैं तो दिखाइए कि सारणिक $\Delta = \left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|$ का मान ऋणात्मक है।
दर्शाइए कि सारणिक $\Delta$ = $\left|\begin{array}{ccc} (y+z)^{2} & x y & z x \\ x y & (x+z)^{2} & y z \\ x z & y z & (x+y)^{2} \end{array}\right| = 2xyz (x + y + z)^3$
सारणिक के गुणधर्म का प्रयोग करके सिद्ध कीजिए:
$\left|\begin{array}{ccc} 1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q \end{array}\right| = 1$
सारणिक के गुणधर्म का प्रयोग करके सिद्ध कीजिए:
$\left|\begin{array}{ccc} 3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c \end{array}\right| = 3(a + b + c)(ab + bc + ca)$
प्रदर्शित कीजिए कि आव्यूह $A = \left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ समीकरण $A^2 - 4A + I =O,$ जहाँ I $2 \times 2$ कोटि का एक तत्समक आव्यूह है और $O, 2 \times 2$ कोटि का एक शून्य आव्यूह है। इसकी सहायता से $A^{-1}$ ज्ञात कीजिए।