सिद्ध कीजिए कि R में योग तथा गुणा साहचर्य द्विआधारी संक्रियाएँ हैं। परंतु व्यवकलन तथा भाग R में साहचर्य नहीं है।
example-36
Download our app for free and get startedPlay store
योग तथा गुणा साहचर्य हैं, क्योंकि (a + b) + c = a + (b + c) तथा $(a \times b) \times c=a \times(b \times c), \forall a, b, c \in \mathrm{R}$ है। तथापि अंतर तथा भाग साहचर्य नहीं हैं, क्योंकि $(8-5)-3 \neq 8-(5-3)$ तथा $(8 \div 5) \div 3 \neq 8 \div(5 \div 3)$
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    मान लीजिए कि $T$ किसी समतल में स्थित समस्त त्रिभुजों का एक समुच्चय है। समुच्चय $T$ में $ \mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}, \mathrm{~T}_{2}\right.\}$ के सर्वागंसम है एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।
    View Solution
  • 2
    सिद्ध कीजिए कि (a, b) $\rightarrow$ अधिकतम {a, b} द्वारा परिभाषित $\vee: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ तथा (a, b) $ \rightarrow$ निम्नतम {a, b} द्वारा परिभाषित $\wedge: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ द्विआधारी संक्रियाएँ हैं।
    View Solution
  • 3
    सिद्ध कीजिए कि यदि f: $ \mathrm{A} \rightarrow \mathrm{B}$ तथा $g: \mathrm{B} \rightarrow \mathrm{C}$ एकैकी हैं, तो $g o f: \mathrm{A} \rightarrow \mathrm{C}$ भी एकैकी है।
    View Solution
  • 4
    मान लीजिए कि A किसी बालकों के स्कूल के सभी विद्यार्थियों का समुच्चय है। दर्शाइए कि R = (a, b): a, b की बहन है द्वारा प्रदत्त संबंध एक रिक्त संबंध है तथा $\mathrm{R}^{\prime}=\{(a, b) : a$ तथा b की ऊँचाईयों का अंतर 3 मीटर से कम है द्वारा प्रदत्त संबंध एक सार्वत्रिक संबंध है।
    View Solution
  • 5
    मान लीजिए कि P किसी प्रदत्त समुच्चय X के समस्त उप समुच्चयों का, समुच्चय है। सिद्ध कीजिए कि $\cup: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P},(\mathrm{A}, \mathrm{B}) \rightarrow \mathrm{A} \cup \mathrm{B}$ द्वारा प्रदत्त तथा $\cap: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P}(\mathrm{A}, \mathrm{B}) \rightarrow \mathrm{A} \cap \mathrm{B}$ द्वारा परिभाषित फलन, P में द्विआधारी संक्रियाएँ हैं।
    View Solution
  • 6
    सिद्ध कीजिए कि f(x) = 2x द्वारा प्रदत्त फलन f : $ \mathbf{R} \rightarrow \mathbf{R}$, एकैकी तथा आच्छादक है।
    View Solution
  • 7
    सिद्ध कीजिए कि आच्छादक फलन f : {1, 2, 3} $\rightarrow $ {1, 2, 3} सदैव एकैकी फलन होता है।
    View Solution
  • 8
    निर्धारित कीजिए कि समुच्चय R में प्रदत्त निम्नलिखित द्विआधारी संक्रियाओं में से कौन सी साहचर्य हैं और कौन सी क्रमविनिमेय हैं।
    1. a $* $ b = 1, $\forall$ a, b $\in$ R
    2. a $* $ b = $\frac{(a+b)}{2}$ $\forall$ a, b $\in$ R
    View Solution
  • 9
    सिद्ध कीजिए कि $ a * b \rightarrow a+2 b $ द्वारा प्रदत्त $*: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} $ साहचर्य नहीं है।
    View Solution
  • 10
    मान लीजिए कि f : {2, 3, 4, 5} $ \rightarrow$ {3, 4, 5, 9} और g : {3, 4, 5, 9} $ \rightarrow$ {7, 11, 15} दो फलन इस प्रकार हैं कि f(2) = 3, f(3) = 4, f(4) = f(5) = 5 और g (3) = g (4) = 7 तथा g (5) = g (9) = 11, तो gof ज्ञात कीजिए।
    View Solution