सिद्ध कीजिए कि $ a * b \rightarrow a+2 b $ द्वारा प्रदत्त $*: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} $ साहचर्य नहीं है।
example-37
Download our app for free and get startedPlay store
संक्रिया * साहचर्य नहीं है, क्योंकि
$(8 * 5) * 3=(8+10) * 3$ = (8 + 10) + 6 = 24,
जबकि $8 *(5 * 3)=8 *(5+6)=8 * 11$ = 8 + 22 = 30
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध कीजिए कि पूर्णांकों के समुच्चय Z में R = {(a, b) : संख्या 2, (a - b) को विभाजित करती है} द्वारा प्रदत्त संबंध एक तुल्यता संबंध है।
    View Solution
  • 2
    सिद्ध कीजिए कि $*: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R},(a, b) \rightarrow a+4 b^{2}$ द्वारा प्रदत्त एक द्विआधारी संक्रिया है।
    View Solution
  • 3
    मान लीजिए कि P किसी प्रदत्त समुच्चय X के समस्त उप समुच्चयों का, समुच्चय है। सिद्ध कीजिए कि $\cup: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P},(\mathrm{A}, \mathrm{B}) \rightarrow \mathrm{A} \cup \mathrm{B}$ द्वारा प्रदत्त तथा $\cap: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P}(\mathrm{A}, \mathrm{B}) \rightarrow \mathrm{A} \cap \mathrm{B}$ द्वारा परिभाषित फलन, P में द्विआधारी संक्रियाएँ हैं।
    View Solution
  • 4
    मान लीजिए कि f :X $\rightarrow$ Y एक फलन है। X में R = {(a, b) : f(a) = f(b)} द्वारा प्रदत्त एक संबंध R परिभाषित कीजिए। जाँचिए कि क्या R एक तुल्यता संबंध है।
    View Solution
  • 5
    दि गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए। $a * b=a^{2}+b^{2}$
    View Solution
  • 6
    यदि $ f: \mathbf{R} \rightarrow \mathbf{R}$ तथा $g: \mathbf{R} \rightarrow \mathbf{R}$ फलन क्रमशः $f(x)=\cos x$ तथा $g(x)=3 x^{2}$ द्वारा परिभाषित है तो gof और fog ज्ञात कीजिए। सिद्ध कीजिए gof $\neq fog$.
    View Solution
  • 7
    मान लीजिए कि $ \mathrm{S}=\{1,2,3\}$ है। निर्धारित कीजिए कि क्या नीचे परिभाषित फलन f : $ \mathrm{S} \rightarrow \mathrm{S}$ के प्रतिलोम फलन हैं। $f^{-1}$, ज्ञात कीजिए यदि इसका अस्तित्व है।
    1. $f=\{(1,1),(2,2),(3,3)\}$
    2. $f=\{(1,2),(2,1),(3,1)\}$
    3. $f=\{(1,3),(3,2),(2,1)\}$
    View Solution
  • 8
    मान लीजिए कि A किसी बालकों के स्कूल के सभी विद्यार्थियों का समुच्चय है। दर्शाइए कि R = (a, b): a, b की बहन है द्वारा प्रदत्त संबंध एक रिक्त संबंध है तथा $\mathrm{R}^{\prime}=\{(a, b) : a$ तथा b की ऊँचाईयों का अंतर 3 मीटर से कम है द्वारा प्रदत्त संबंध एक सार्वत्रिक संबंध है।
    View Solution
  • 9
    सिद्ध कीजिए कि f(x) = 2x द्वारा प्रदत्त फलन f : $ \mathbf{R} \rightarrow \mathbf{R}$, एकैकी तथा आच्छादक है।
    View Solution
  • 10
    मान लीजिए कि L किसी समतल में स्थित समस्त रेखाओं का एक समुच्चय है तथा $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right): \mathrm{L}_{1}, \mathrm{~L}_{2}\right.$ पर लंब है$\}$ समुच्चय $L$ में परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ सममित है किंत यह न तो स्वतल्य है और न संक्रामक है।
    View Solution