\(\bar{F}=(-e)\left(-E_{0} \hat{i}\right)=e E_{0} \hat{i}\)
Acceleration produced in the electron, \(\vec{a}=\frac{\vec{F}}{m}=\frac{e E_{0}}{m} \hat{i}\)
Now, velocity of electron after time \(t\)
\(\vec{v}_{t}=\vec{v}+\vec{a} t=\left(v_{0}+\frac{e E_{0} t}{m}\right) \hat{i}\)
or \(\left|\vec{v}_{t}\right|=v_{0}+\frac{e E_{0} t}{m}\)
Now, \(\lambda_{t}=\frac{h}{m v_{t}}=\frac{h}{m\left(v_{0}+\frac{e E_{0} t}{m}\right)}=\frac{h}{m v_{0}\left(1+\frac{e E_{0} t}{m v_{0}}\right)}\)
\(=\frac{\lambda_{0}}{\left(1+\frac{e E_{0} t}{m v_{0}}\right)} \quad \quad \quad\left(\because \lambda_{0}=\frac{h}{m v_{0}}\right)\)
$\left\lfloor{m}_{e}=\text { mass of electron }=9 \times 10^{-31} \,{kg}\right.$
${h}=\text { Planck constant }=6.6 \times 10^{-34} {Js}$
$\left.{k}_{{B}}=\text { Boltzmann constant }=1.38 \times 10^{-23}\, {JK}^{-1}\right]$