Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
किसी स्कूल की पुस्तकों की दुकान में $10$ दर्जन रसायन विज्ञान, $8$ दर्जन भौतिक विज्ञान तथा $10$ दर्जन अर्थशास्त्र की पुस्तकें हैं। इन पुस्तकों का विक्रय मूल्य क्रमशः $₹80, ₹60$ तथा $₹40$ प्रति पुस्तक है। आव्यूह बीजगणित के प्रयोग द्वारा ज्ञात कीजिए कि सभी पुस्तकों को बेचने से दुकान को कुल कितनी धनराशि प्राप्त होगी।
परिकलित कीजिए: $\left[\begin{array}{cc} \cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x \end{array}\right]$ + $\left[\begin{array}{cc} \sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x \end{array}\right]$
यदि A =$\left[\begin{array}{cc}8 & 0 \\ 4 & -2 \\ 3 & 6\end{array}\right]$, B = $ \left[\begin{array}{cc}2 & -2 \\ 4 & 2 \\ -5 & 1\end{array}\right]$ तथा 2A + 3X = 5B दिया हो तो आव्यूह X ज्ञात कीजिए।
यदि A = $\left[\begin{array}{lll}3 & \sqrt{3} & 2 \\ 4 & 2 & 0\end{array}\right]$ तथा B = $\left[\begin{array}{rrr}2 & -1 & 2 \\ 1 & 2 & 4\end{array}\right]$ तो (kB)$^{\prime}$ = kB$^{\prime}$, जहाँ k कोई अचर है को सत्यापित कीजिए।