Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
यदि परस्पर लंबवत् मात्रक सदिशों $\hat{i}$, $\hat{j}$ और $\hat{k}$, की दक्षिणावर्ती पद्धति के सापेक्ष $\vec{\alpha}$ = $3 \hat{i}-\hat{j}$, $\vec{\beta}$ = $2 \hat{i}+\hat{j}-3 \hat{k}$, तो $\vec{\beta}$ को $\vec{\beta}$ = $\vec{\beta}_{1}+\vec{\beta}_{2}$ के रूप में अभिव्यक्त कीजिए जहाँ $\vec{\beta}_{1}, \vec{\alpha}$ के समांतर है और $\vec{\beta}_{2}, \vec{\alpha}$ के लंबवत् है।
बिंदुओं P$(\hat{i}+2 \hat{j}-\hat{k})$ और Q$(-\hat{i}+\hat{j}+\hat{k})$ को मिलाने वाली रेखा को 2 : 1 के अनुपात में बाह्य विभाजित करने वाले बिंदु R का स्थिति सदिश ज्ञात कीजिए।