एक सरल आवर्त गतिक कम्पक की स्थितिज ऊर्जा कितनी होगी, जब कण अपने अंत्य बिंदु के आधे रास्ते पर है:
[2003]
Download our app for free and get started
(d) $PE =\frac{1}{2} kx ^2= E$
आधे रास्ते में
$
PE =\frac{1}{2} k \left(\frac{ x }{2}\right)^2=\frac{\frac{1}{2} kx ^2}{4}=\frac{ E }{4}
$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक 200 न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये?( मान लो $g =10$ मी $/$ से $^2$ )
किसी नगण्य द्रव्यमान के स्प्रिंग से लटकाये गये $M$ द्रव्यमान का दोलनकाल $T$ है। यदि इसके साथ ही एक अन्य $M$ द्रव्यमान लटका दिया जाय तो दोलनकाल हो जायेगा
एक पिण्ड सरल आवर्तगति करता है। जब उसका विस्थापन माध्य स्थिति से $4$ सेमी तथा $5$ सेमी हो तो उसका वेग $10$ सेमी/सेकंड तथा $8$ सेमी/सेकंड है, इसका आवर्तकाल होगा $-$
एक सरल लोलक एक क्षैतिज दिशा में ' $a$ ' त्वरण से चलती हुई ट्राली की छत से लटका है। उसका आवर्तकाल $T =2 \pi \sqrt{\frac{\ell}{ g }}$ से दिया जाता है जहां $g$ का मान होगा
दो द्रव्यमान $M _{ A }$ तथा $M _{ B }$ को दो तारों, जिनकी लम्बाइयां $L _{ A }$ तथा $L _{ B }$ है, से लटकाने पर सरल आवर्तगतियां करते है। यदि इनकी आवर्तियों में संबंध $f _{ A }=2 f _{ B }$ हो तो