a $* b = (a-b)^2$ दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
Exercise-1.4-10(4)
Download our app for free and get startedPlay store
परिमेय संख्याओं के समुच्चय $Q$ में संक्रिया $ *, a  * b = (a-b)^{2}$ द्वारा परिभाषित है।
यदि $a * e=a, a \neq 0 $
$\Rightarrow (a-e)^{2}=a, a \neq 0$
$\therefore a = - 2$ के लिए,
$(-2-e)^{2} \neq-2\  (\because $वर्ग हमेशा धनात्मक होता है$)$
अत:$Q$ में संक्रिया $a  * b = (a-b)^{2}$ के सापेक्ष कोई तत्समक अवयव विद्यमान नहीं है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    मान लीजिए कि समुच्चय A में धन पूर्णांकों के क्रमित युग्मों (ordered pairs) का एक संबंध R, (x, y) R (u, v), यदि और केवल यदि, xv = yu द्वारा परिभाषित है। सिद्ध कीजिए कि R एक तुल्यता संबंध है।
    View Solution
  • 2
    सिद्ध कीजिए कि R में योग तथा गुणा साहचर्य द्विआधारी संक्रियाएँ हैं। परंतु व्यवकलन तथा भाग R में साहचर्य नहीं है।
    View Solution
  • 3
    $f : {1, 2, 3} \rightarrow {a, b, c}$ तथा $g : {a, b, c} \rightarrow$ {सेब, गेंद, बिल्ली} $f(1) = a, f(2) = b, f(3) = c, g(a) =$ सेब, $g(b) =$ गेंद तथा $g(c) =$ बिल्ली द्वारा परिभाषित फलनों पर विचार कीजिए। सिद्ध कीजिए कि $f, g $और $g\ of$ व्युत्क्रमणीय हैं। f$^{-1}, g^{-1}$ तथा $(gof)^{-1}$ ज्ञात कीजिए तथा प्रमाणित कीजिए कि $(g\ of)^{-1}=f^{-1} o g^{-1}$ है।
    View Solution
  • 4
    मान लीजिए कि $ \mathrm{S}=\{1,2,3\}$ है। निर्धारित कीजिए कि क्या नीचे परिभाषित फलन f : $ \mathrm{S} \rightarrow \mathrm{S}$ के प्रतिलोम फलन हैं। $f^{-1}$, ज्ञात कीजिए यदि इसका अस्तित्व है।
    1. $f=\{(1,1),(2,2),(3,3)\}$
    2. $f=\{(1,2),(2,1),(3,1)\}$
    3. $f=\{(1,3),(3,2),(2,1)\}$
    View Solution
  • 5
    निर्धारित कीजिए कि समुच्चय R में प्रदत्त निम्नलिखित द्विआधारी संक्रियाओं में से कौन सी साहचर्य हैं और कौन सी क्रमविनिमेय हैं।
    1. a $* $ b = 1, $\forall$ a, b $\in$ R
    2. a $* $ b = $\frac{(a+b)}{2}$ $\forall$ a, b $\in$ R
    View Solution
  • 6
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $Z^{+ }$ में, संक्रिया $ *, a * b=|a-b|$ द्वारा परिभाषित
    View Solution
  • 7
    $a *\  b = ab^2$ दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
    View Solution
  • 8
    सिद्ध कीजिए कि f(x) = 2x द्वारा प्रदत्त फलन f : $ \mathbf{R} \rightarrow \mathbf{R}$, एकैकी तथा आच्छादक है।
    View Solution
  • 9
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $Z^+$ में, संक्रिया $ *, a * b=a $ द्वारा परिभाषित
    View Solution
  • 10
    मान लीजिए कि f :X $\rightarrow$ Y एक फलन है। X में R = {(a, b) : f(a) = f(b)} द्वारा प्रदत्त एक संबंध R परिभाषित कीजिए। जाँचिए कि क्या R एक तुल्यता संबंध है।
    View Solution