निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
$Z^{+ }$ में, संक्रिया $ *, a * b=|a-b|$ द्वारा परिभाषित
Exercise-1.4-1(4)
Download our app for free and get startedPlay store
$Z^{+ }$ में संक्रिया $*, a * b = |a - b|$ द्वारा परिभाषित है। चूँकि दो धनात्मक पूर्णांक के अन्तर का मापांक भी एक धनात्मक पूर्णांक होता है। अतः प्रत्येक $a, b \in Z^{+}$ के लिए $a * b = |a - b|, Z^{+ }$ में एक अद्वितीय धनात्मक पूर्णांक है। अतः $Z^{+ }$ में संक्रिया $a * b = |a - b|$ एक द्विआधारी संक्रिया है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध कीजिए कि समुच्चय ${1, 2, 3}$ में $(1, 2)$ तथा $(2, 1)$ को अन्तर्विष्ट करने वाले तुल्यता संबंधों की संख्या $2$ है।
    View Solution
  • 2
    सिद्ध कीजिए कि पूर्णांकों के समुच्चय Z में R = {(a, b) : संख्या 2, (a - b) को विभाजित करती है} द्वारा प्रदत्त संबंध एक तुल्यता संबंध है।
    View Solution
  • 3
    सिद्ध कीजिए कि नीचे परिभाषित फलन $f : N \rightarrow N$, एकैकी तथा आच्छादक दोनों ही है
    View Solution
  • 4
    मान लीजिए कि $T$ किसी समतल में स्थित समस्त त्रिभुजों का एक समुच्चय है। समुच्चय $T$ में $ \mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}, \mathrm{~T}_{2}\right.\}$ के सर्वागंसम है एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।
    View Solution
  • 5
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $\mathbf{Z}^{+} $ में, $ a * b=a b$ द्वारा परिभाषित संक्रिया *
    View Solution
  • 6
    यदि gof आच्छदक है, तो क्या f तथा g दोनों अनिवार्यतः आच्छादक हैं?
    View Solution
  • 7
    सिद्ध कीजिए कि $f(x) = x^2$ द्वारा परिभाषित फलन $f: {R} \rightarrow {R},$ न तो एकैकी है और न आच्छादक है।
    View Solution
  • 8
    सिद्ध कीजिए कि $*: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R},(a, b) \rightarrow a+4 b^{2}$ द्वारा प्रदत्त एक द्विआधारी संक्रिया है।
    View Solution
  • 9
    मान लीजिए कि$ f : N \rightarrow R, f(x) = 4x^{2 }+ 12x + 15$ द्वारा परिभाषित एक फलन है। सिद्ध कीजिए कि $f : N \rightarrow S,$ जहाँ $S, f$ का परिसर है, व्युत्क्रमणीय है। $f$ का प्रतिलोम भी ज्ञात कीजिए।
    View Solution
  • 10

    सिद्ध कीजिए कि f(x) = 2x द्वारा प्रदत्त फलन f : $ \mathbf{N} \rightarrow \mathbf{N}$, एकैकी है किंतु आच्छादक नहीं है।

    View Solution