मान लीजिए कि f :X $\rightarrow$ Y एक फलन है। X में R = {(a, b) : f(a) = f(b)} द्वारा प्रदत्त एक संबंध R परिभाषित कीजिए। जाँचिए कि क्या R एक तुल्यता संबंध है।
example-44
Download our app for free and get started
प्रत्येक a $\in$ X के लिए (a, a) $\in$ R, क्योंकि f(a) = f(a), जिससे स्पष्ट होता है कि R स्वतुल्य है। इसी प्रकार, (a, b) $\in$ R $\Rightarrow$ f(a) = f(b) $\Rightarrow$ f(b) = f(a) $\Rightarrow$ (b, a) $\in$ R इसलिए R सममित है। पुनः (a, b) $\in$ R तथा (b, c) $\in$ R $\Rightarrow$ f(a) = f(b) तथा f(b) = f(c) $\Rightarrow$ f(a) = f(c) $\Rightarrow$ (a, c) $\in$ R, जिसका तात्पर्य है कि R संक्रामक है। अतः R एक तुल्यता संबंध है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
मान लीजिए कि $\mathrm{Y}=\left\{n^{2}: n \in \mathrm{N}\right\} \subset \mathrm{N}$ है। फलन $f : \mathrm{N} \rightarrow \mathrm{Y}$ जहाँ $f(n) = n^2$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। $f$ का प्रतिलोम भी ज्ञात कीजिए।
निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए। $\mathbf{Z}^{+} $ में, $ a * b=a b$ द्वारा परिभाषित संक्रिया *
सिद्ध कीजिए कि R में शून्य (0) योग का तत्समक है तथा 1 गुणा का तत्समक है। परंतु संक्रियाओं $-: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ और $\div: \mathbf{R}_{*} \times \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ के लिए कोई तत्समक अवयव नहीं है।
मान लीजिए कि समुच्चय A में धन पूर्णांकों के क्रमित युग्मों (ordered pairs) का एक संबंध R, (x, y) R (u, v), यदि और केवल यदि, xv = yu द्वारा परिभाषित है। सिद्ध कीजिए कि R एक तुल्यता संबंध है।
सिद्ध कीजिए कि (a, b) $\rightarrow$ अधिकतम {a, b} द्वारा परिभाषित $\vee: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ तथा (a, b) $ \rightarrow$ निम्नतम {a, b} द्वारा परिभाषित $\wedge: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ द्विआधारी संक्रियाएँ हैं।