Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
दूसरी पंक्ति के अवयवों के सहखंडों का प्रयोग करके $\Delta = \left|\begin{array}{lll} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{array}\right|$ का मान ज्ञात कीजिए।
सिद्ध कीजिये कि $\Delta = \left|\begin{array}{ccc} a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c \end{array}\right| = a^3$
सारणिक के गुणधर्म का प्रयोग करके सिद्ध कीजिए:
$\left|\begin{array}{ccc} 3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c \end{array}\right| = 3(a + b + c)(ab + bc + ca)$
सारणिक के गुणधर्मों का प्रयोग करके $\left|\begin{array}{lll} x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3} \end{array}\right| = (1 + pxyz) (x - y) (y - z) (z - x)$ को सिद्ध कीजिए।
सारणिक के गुणधर्म का प्रयोग करके सिद्ध कीजिए:
$\left|\begin{array}{ccc} 1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q \end{array}\right| = 1$