आकृति में, $BOA$ वृत्त का एक व्यास है तथा एक बिंदु $P$ पर खींची गई स्पर्श रेखा बढ़ाई गई $BA$ से $T$ पर मिलती है। यदि $\angle PBO = 30^{\circ}$ है, तो $\angle PTA$ भी $30^{\circ}$ के बराबर है।
example-9.2-1
Download our app for free and get started
क्योंकि $\angle BPA = 90^{\circ}$ है, इसलिए $\angle PAB = \angle OPA = 60^{\circ}$ है।
साथ ही, $OP \perp PT$ है। अतः, $\angle APT = 30^{\circ}$ और $\angle PTA = 60^{\circ} - 30^{o }= 30^{\circ}$ है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
यदि a, b, c किसी समकोण त्रिभुज की भुजाएँ हैं, जिनमें से c कर्ण है, तो सिद्ध कीजिए कि उस वृत्त की त्रिज्या r, जो इस त्रिभुज की भुजाओं को स्पर्श करता है, r = $\frac{a+b-c}{2}$ से प्राप्त होती है।
यदि केंद्र $O$ वाले एक वृत्त के एक बाहरी बिंदु $B$ से दो स्पर्श रेखाएँ $BC$ और $BD$ इस प्रकार खींची जाएँ कि $\angle \text{DBC} = 120^\circ$ है, तो सिद्ध कीजिए कि $BC + BD = BO$ है, अर्थात् $BO = 2BC$ है।
यदि $d_1$ और $d_{2 }(d_{2 }> d_1)$ दो संकेंद्रीय वृत्तों के व्यास हैं तथा $c$ एक वृत्त की उस जीवा की लंबाई है, जो दूसरी वृत्त की स्पर्श रेखा है, तो सिद्ध कीजिए कि $d_{2}^{2} = c^2 + d_{1}^{2}$ है।
आकृति में, $\text{PQL}$ और $\text{PRM}$ केंद्र $O$ वाले वृत्त की बिंदुओं $Q$ और $R$ पर क्रमशः स्पर्श रेखाएँ हैं तथा $S$ इस वृत्त पर एक बिंदु इस प्रकार स्थित है कि $\angle \text{SQL} = 50^\circ$ और $\angle \text{SRM} = 60^\circ$ है। तब, $\angle \text{QSR} = 40^\circ$ है।