सिद्ध कीजिए कि किसी वृत्त की एक जीवा के सिरों पर खींची गई स्पर्श रेखाएँ उस जीवा से बराबर कोण बनाती हैं।
Exercise-9.3-9
Download our app for free and get startedPlay store
मान लीजिए $NM$ केंद्र $C$ वाले वृत्त की जीवा है।
मान लीजिए कि $M$ और $N$ पर स्पर्श रेखाएँ $O$ पर मिलती हैं।
चूँकि $OM$ एक स्पर्श रेखा है
$\therefore MO \perp CM$ अर्थात $\angle OMC = 90^\circ$
$\because ON$ एक स्पर्श रेखा है
$\therefore ON \perp CN$ अर्थात $\angle ONC = 90^\circ$
फिर से $\triangle CMN$ में, $CM = CN = r$
$\therefore \angle CMN = \angle CNM$
$\therefore \angle OMC - \angle CMN = \angle ONC - \angle CNM$
$\Rightarrow \angle OML \cong \angle ONL$
इस प्रकार, स्पर्श रेखाएँ जीवा से समान कोण बनाती हैं।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    यदि केंद्र $O$ वाले एक वृत्त के एक बाहरी बिंदु $B$ से दो स्पर्श रेखाएँ $BC$ और $BD$ इस प्रकार खींची जाएँ कि $\angle \text{DBC} = 120^\circ$ है, तो सिद्ध कीजिए कि $BC + BD = BO$ है, अर्थात् $BO = 2BC$ है।
    View Solution
  • 2
    यदि a, b, c किसी समकोण त्रिभुज की भुजाएँ हैं, जिनमें से c कर्ण है, तो सिद्ध कीजिए कि उस वृत्त की त्रिज्या r, जो इस त्रिभुज की भुजाओं को स्पर्श करता है, r = $\frac{a+b-c}{2}$ से प्राप्त होती है।
    View Solution
  • 3
    सिद्ध कीजिए कि दो प्रतिच्छेदी रेखाओं को स्पर्श करने वाले वृत्त का केंद्र इन रेखाओं से बने कोण के समद्विभाजक पर स्थित होता है।
    View Solution
  • 4
    एक वृत्त की जीवा PQ, बिंदु R पर इस वृत्त की स्पर्श रेखा के समांतर है। सिद्ध कीजिए कि बिंदु R चाप PRQ को सम- द्विभाजित करता है।
    View Solution
  • 5

    आकृति में, AB और CD असमान त्रिज्याओं वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ हैं। सिद्ध कीजिए कि AB = CD हैं।

    View Solution
  • 6
    सिद्ध कीजिए कि किसी वृत्त का एक व्यास $AB$ उन सभी जीवाओं को समद्विभाजित करता है, जो बिंदु $A$ से खींची गई वृत्त की स्पर्श रेखा के समांतर हैं।
    View Solution
  • 7

    आकृति में, दोनों वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ AB और CD परस्पर बिंदु E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि AB = CD है।

    View Solution
  • 8
    आकृति में, $BOA$ वृत्त का एक व्यास है तथा एक बिंदु $P$ पर खींची गई स्पर्श रेखा बढ़ाई गई $BA$ से $T$ पर मिलती है। यदि $\angle PBO = 30^{\circ}$ है, तो $\angle PTA$ भी $30^{\circ}$ के बराबर है।
    View Solution
  • 9
    आकृति में, $\text{PQL}$ और $\text{PRM}$ केंद्र $O$ वाले वृत्त की बिंदुओं $Q$ और $R$ पर क्रमशः स्पर्श रेखाएँ हैं तथा $S$ इस वृत्त पर एक बिंदु इस प्रकार स्थित है कि $\angle \text{SQL} = 50^\circ$ और $\angle \text{SRM} = 60^\circ$ है। तब, $\angle \text{QSR} = 40^\circ$ है।
    View Solution
  • 10
    दो संकेंद्रीय वृत्तों में से बाहरी वृत्त की त्रिज्या $5 \ cm$ है तथा इसकी $8 \ cm$ लंबी जीवा $AC$ आंतरिक वृत्त की स्पर्श रेखा है। आंतरिक वृत्त की त्रिज्या ज्ञात कीजिए।
    View Solution