आकृति में,$\triangle ODC \sim \triangle OBA,\angle BOC = 125^\circ$ और $\angle CDO = 70^\circ$ है। $\angle DOC,\angle DCO$ और $\angle OAB$ ज्ञात कीजिए:
Exercise-6.3-2
Download our app for free and get startedPlay store
हल: हमें ज्ञात है कि
$\angle BOC = 125^\circ$ और $\angle CDO = 70^\circ$
चूँकि,
$\angle DOC +\angle BOC = 180^\circ ...[$रैखिक युग्म$]$
$\Rightarrow \angle DOC = 180^\circ - 125^\circ = 55^\circ ...(i)$
$\triangle DOC$ में त्रिभज के कोणों का योग $= 180^\circ$ का प्रयोग करने पर
$\angle DOC +\angle ODC +\angle DCO = 180^\circ$
$\Rightarrow 55^\circ + 70^\circ +\angle DCO = 180^\circ$
$\Rightarrow \angle DCO = 180^\circ - 55^\circ - 70^\circ = 55^\circ ...(ii)$
पुनः,$\because \triangle ODC \sim \triangle OBA ...[$ज्ञात है$]$
$\therefore$ उनकी संगत कोण समान हैं
$\angle OCD =\angle OAB = 55^\circ ...(iii)$
इस प्रकार$, (i), (ii)$ और $(iii)$ से,$\angle DOC = 55^\circ$ और $\angle OAB = 55^o$ तथा $\angle DCO = 55^\circ$
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    एक सीढ़ी किसी दीवार पर इस प्रकार टिकी हुई है कि इसका निचला सिरा दीवार से $2.5 m$ की दूरी पर है तथा इसका ऊपरी सिरा भूमि से $6 m$ की ऊँचाई पर बनी एक खिड़की तक पहुँचता है। सीढ़ी की लंबाई ज्ञात कीजिए।
    View Solution
  • 2
    आकृति में CM और RN क्रमशः$\triangle$ABC और$\triangle$PQR की माध्यिकाएँ हैं। यदि$\triangle$ABC$\sim$ $\triangle$PQR है तो सिद्ध कीजिए कि-

    1. $\triangle$AMC$\sim$ $\triangle$PNR
    2. $\frac{{CM}}{{RN}}=\frac{{AB}}{{PQ}}$
    3. $\triangle$CMB$\sim$$\triangle$RNQ
    View Solution
  • 3
    प्रमेय 6.2 का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिंदुओं को मिलाने वाली रेखा तीसरी भुजा के समांतर होती है। (याद कीजिए कि आप कक्षा IX में ऐसा कर चुके हैं)।
    View Solution
  • 4
    आयत $\text{ABCD}$ के अंदर स्थित $O$ कोई बिंदु है $($आकृति देखिए$)$। सिद्ध कीजिए कि $OB^2 + OD^2 = OA^2 + OC^2$ है।
    View Solution
  • 5
    आकृति में $\angle ACB = 90^\circ$ तथा  $CD \perp AB $है। सिद्ध कीजिए कि $\frac{{BC}^{2}}{{AC}^{2}}=\frac{{BD}}{{AD}}$ है।
    View Solution
  • 6
    थेल्स प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है। (याद कीजिए कि आप इसे कक्षा IX में सिद्ध कर चुके हैं।)
    View Solution
  • 7
    CD और GH क्रमश:$\angle$ACB और$\angle$EGF के ऐसे समद्विभाजक हैं कि बिंदु D और H क्रमश:$\triangle$ABC और$\triangle$FEG की भुजाओं AB और FE पर स्थित हैं| यदि$\triangle$ABC$\sim$$\triangle$FEG है, तो दर्शाइए कि:
    1. $\frac{CD}{GH} = \frac{AC}{FG}$
    2. $\triangle$DCB$\sim$$\triangle$HGE
    3. $\triangle$DCA$\sim$$\triangle$HGF
    View Solution
  • 8
    ABCD एक समलंब है जिसमें AB || DC है तथा इसके विकर्ण परस्पर बिंदु O पर प्रतिच्छेद करते हैं। दर्शाइए कि $\frac{AO}{BO} = \frac{CO}{DO}$ हैं।
    View Solution
  • 9
    किसी$\triangle$PQR की भुजाओं PQ और PR पर क्रमशः बिन्दु E और F स्थित हैं। बताइए कि क्या EF || QR है?
    PE = 3.9 cm, EQ = 3cm, PF = 3.6cm और FR = 2.4 cm
    View Solution
  • 10
    आकृति में DE || AC और DF || AE है। सिद्ध कीजिए कि $\frac{BF}{FE} = \frac{BE}{EC}$ है।

    View Solution