ABCD एक समलंब है जिसमें AB || DC है तथा इसके विकर्ण परस्पर बिंदु O पर प्रतिच्छेद करते हैं। दर्शाइए कि $\frac{AO}{BO} = \frac{CO}{DO}$ हैं।
Exercise-6.2-9
Download our app for free and get startedPlay store


हमें ज्ञात है कि एक समलम्ब चतुर्भुज ABCD में AB || DC
$\because$ विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं और यदि O से OE || AB या DC खींचने पर,
$\triangle$ADC में OE || DC [रचना द्वारा]
$\therefore$ मूलभूत समानुपातिकता प्रमेय से,
$\frac{{AE}}{{ED}}=\frac{{AO}}{{CO}}$ ... (i)
$\triangle$ABD में
OE || AB [रचना द्वारा]
$\therefore$ मूलभूत समानुपातिकता प्रमेय से,
$\frac{{ED}}{{AE}}=\frac{{DO}}{{BO}}$
$\Rightarrow$ $\frac{{AE}}{{ED}}=\frac{{BO}}{{DO}}$ ... (ii)
(i) और (ii) से
$\frac{{AE}}{{ED}}=\frac{{BO}}{{DO}}=\frac{{AO}}{{CO}}$
$\Rightarrow$ $\frac{{BO}}{{DO}}=\frac{{AO}}{{CO}} \Rightarrow \frac{{AO}}{{BO}}=\frac{{CO}}{{DO}}$
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    आकृति में,$\triangle ABC$ के शीर्षलंब $AD$ और $CE$ परस्पर बिंदु $P$ पर प्रतिच्छेद करते हैं तो दर्शाइए कि: $\triangle AEP\sim \triangle CDP$
    View Solution
  • 2
    $90 \ cm$ की लंबाई वाली एक लड़की बल्ब लगे एक खंभे के आधार से परे $1.2 m/s$ की चाल से चल रही है। यदि बल्ब भूमि से $3.6 \ cm$ की ऊँचाई पर है, तो $4$ सेकंड बाद उस लड़की की छाया की लंबाई ज्ञात कीजिए।
    View Solution
  • 3
    आकृति (i) और (ii) में, DE || BC और (i) में EC और (ii) में AD ज्ञात कीजिए:

    View Solution
  • 4
    आकृति में $AD \perp BC$ है। सिद्ध कीजिए कि $\ce{AB^2 + CD^2 = BD^2 + AC^2}$ है।
    View Solution
  • 5
    CD और GH क्रमश:$\angle$ACB और$\angle$EGF के ऐसे समद्विभाजक हैं कि बिंदु D और H क्रमश:$\triangle$ABC और$\triangle$FEG की भुजाओं AB और FE पर स्थित हैं| यदि$\triangle$ABC$\sim$$\triangle$FEG है, तो दर्शाइए कि:
    1. $\frac{CD}{GH} = \frac{AC}{FG}$
    2. $\triangle$DCB$\sim$$\triangle$HGE
    3. $\triangle$DCA$\sim$$\triangle$HGF
    View Solution
  • 6
    थेल्स प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है। (याद कीजिए कि आप इसे कक्षा IX में सिद्ध कर चुके हैं।)
    View Solution
  • 7
    आकृति में $\angle ACB = 90^\circ$ तथा  $CD \perp AB $है। सिद्ध कीजिए कि $\frac{{BC}^{2}}{{AC}^{2}}=\frac{{BD}}{{AD}}$ है।
    View Solution
  • 8
    प्रमेय 6.2 का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिंदुओं को मिलाने वाली रेखा तीसरी भुजा के समांतर होती है। (याद कीजिए कि आप कक्षा IX में ऐसा कर चुके हैं)।
    View Solution
  • 9
    एक सीढ़ी किसी दीवार पर इस प्रकार टिकी हुई है कि इसका निचला सिरा दीवार से $2.5 m$ की दूरी पर है तथा इसका ऊपरी सिरा भूमि से $6 m$ की ऊँचाई पर बनी एक खिड़की तक पहुँचता है। सीढ़ी की लंबाई ज्ञात कीजिए।
    View Solution
  • 10
    आयत $\text{ABCD}$ के अंदर स्थित $O$ कोई बिंदु है $($आकृति देखिए$)$। सिद्ध कीजिए कि $OB^2 + OD^2 = OA^2 + OC^2$ है।
    View Solution