थेल्स प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है। (याद कीजिए कि आप इसे कक्षा IX में सिद्ध कर चुके हैं।)
Exercise-6.2-7
Download our app for free and get startedPlay store
हमें ज्ञात है कि एक$\triangle$ABC में भुजा AB का मध्य बिन्दु D तथा AC पर E इस प्रकार है कि

DE || BC
$\therefore$ मूलभूत समानुपातिकता प्रमेय से
$\frac{{AD}}{{DB}}=\frac{{AE}}{{EC}}$ ...(i)
परन्तु AB का मध्य बिन्दु D है।
$\therefore$ AD=DB
$\Rightarrow$ $\frac{{AD}}{{DB}}$ = 1 ...(ii)
(i) और (ii) से,
1 =$\frac{{AE}}{{EC}}$
$\Rightarrow$ EC = AE
$\Rightarrow$ E, भुजा AC का मध्यबिंदु है।
अत: उक्त से सिद्ध होता है कि एक त्रिभुज के मध्यबिंदु से होकर दूसरी भुजा के समान्तर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    आकृति में,$\triangle ODC \sim \triangle OBA,\angle BOC = 125^\circ$ और $\angle CDO = 70^\circ$ है। $\angle DOC,\angle DCO$ और $\angle OAB$ ज्ञात कीजिए:
    View Solution
  • 2
    आकृति में DE || AC और DF || AE है। सिद्ध कीजिए कि $\frac{BF}{FE} = \frac{BE}{EC}$ है।

    View Solution
  • 3
    आकृति में क्रमशः OP, OQ और OR पर स्थित बिंदु A, B और C इस प्रकार हैं कि AB || PQ और AC || PR है। दर्शाइए कि BC || QR है।

    View Solution
  • 4
    आकृति में,$\triangle ABC$ के शीर्षलंब $AD$ और $CE$ परस्पर बिंदु $P$ पर प्रतिच्छेद करते हैं तो दर्शाइए कि: $\triangle AEP\sim \triangle CDP$
    View Solution
  • 5
    आकृति (i) और (ii) में, DE || BC और (i) में EC और (ii) में AD ज्ञात कीजिए:

    View Solution
  • 6
    $BL$ और $CM$ एक समकोण त्रिभुज $\text{ABC}$ की माध्यिकाएँ हैं तथा इस त्रिभुज का कोण $A$ समकोण है। सिद्ध कीजिए कि $4(BL^2 + CM^2) = 5BC^2$
    View Solution
  • 7
    आकृति में CM और RN क्रमशः$\triangle$ABC और$\triangle$PQR की माध्यिकाएँ हैं। यदि$\triangle$ABC$\sim$ $\triangle$PQR है तो सिद्ध कीजिए कि-

    1. $\triangle$AMC$\sim$ $\triangle$PNR
    2. $\frac{{CM}}{{RN}}=\frac{{AB}}{{PQ}}$
    3. $\triangle$CMB$\sim$$\triangle$RNQ
    View Solution
  • 8
    $90 \ cm$ की लंबाई वाली एक लड़की बल्ब लगे एक खंभे के आधार से परे $1.2 m/s$ की चाल से चल रही है। यदि बल्ब भूमि से $3.6 \ cm$ की ऊँचाई पर है, तो $4$ सेकंड बाद उस लड़की की छाया की लंबाई ज्ञात कीजिए।
    View Solution
  • 9
    आयत $\text{ABCD}$ के अंदर स्थित $O$ कोई बिंदु है $($आकृति देखिए$)$। सिद्ध कीजिए कि $OB^2 + OD^2 = OA^2 + OC^2$ है।
    View Solution
  • 10
    किसी$\triangle$PQR की भुजाओं PQ और PR पर क्रमशः बिन्दु E और F स्थित हैं। बताइए कि क्या EF || QR है?
    PE = 3.9 cm, EQ = 3cm, PF = 3.6cm और FR = 2.4 cm
    View Solution