दो घनों, जिनमें से प्रत्येक का आयतन $64 \ cm^3$ है, के संलग्न फलकों को मिलाकर एक ठोस बनाया जाता है। इससे प्राप्त घनाभ का पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7})$
Exercise-12.1-1
Download our app for free and get startedPlay store

प्रत्येक घन का आयतन $= 64$ सेमी.$^3$
$\therefore$ दोनों घनों का आयतन $= 2 \times 64$ सेमी.$^3 = 128$ सेमी.$^3$
माना प्रत्येक घन का किनारा $= x$
$\therefore x^3 = 64 = 4^3 \Rightarrow x = 4$ सेमी.
अब, परिणामी घनाभ के लिए:
लम्बाई $l = 2x$ सेमी., चौड़ाई $b = x$ सेमी., ऊँचाई $h = x$ सेमी.
$\therefore$ परिणामी घनाभ का पृष्ठीय क्षेत्रफल
$= 2(lb + bh + hl) = 2[(2x \cdot x) + (x \cdot x) + (x \cdot 2x)]$
$= 2[(2 \times 4 \times 4) + (4 \times 4) + (4 \times 2 \times 4)]$ सेमी.$^2$
$= 2[32 + 16 + 32]$ सेमी.$^2 = 2[80]$ सेमी.$^2 = 160$ सेमी.$^2$​​​​​​​
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    एक जूस $($juice$)$ बेचने वाला अपने ग्राहकों को आकृति में दर्शाए गिलासों से जूस देता था। बेलनाकार गिलास का आंतरिक व्यास $5 \ cm$ था, परंतु गिलास के निचले आधार $($तली$)$ में एक उभरा हुआ अर्धगोला था, जिससे गिलास की धारिता कम हो जाती थी। यदि एक गिलास की ऊँचाई $10 \ cm$ थी, तो गिलास की आभासी $($apparent$)$ धारिता तथा उसकी वास्तविक धारिता ज्ञात कीजिए। $(\pi = 3.14$ लीजिए।$)$​​​​​​​
    View Solution
  • 2
    हनुमप्पा और उसकी पत्नी गंगाम्मा गन्ने के रस से गुड़ बना रहे हैं। उन्होंने गन्ने के रस को गर्म करके राब $($शीरा$)$ बना ली है, जिसे शंकु के छिन्नक के आकार के साँचों में डाला जाता है, जिनमें से प्रत्येक के दोनों वृत्तीय फलकों के व्यास क्रमशः $30 \ cm $ और $35 \ cm$ हैं तथा साँचे की ऊर्ध्वाधर ऊँचाई $14 \ cm$ है $($देखिए आकृति$)$। यदि $1 \ cm^3$ राब का द्रव्यमान लगभग $1.2 g$ है तो प्रत्येक साँचे में भरी जा सकने वाली राब का द्रव्यमान ज्ञात करें। $\pi=\frac{22}{7}$ लीजिए
    View Solution
  • 3
    व्यास $1 \ cm$ वाली $8 \ cm$ लंबी ताँबे की एक छड़ को एकसमान मोटाई वाले $18 m$ लंबे एक तार के रूप में खींचा जाता $($बदला जाता$)$ है। तार की मोटाई ज्ञात कीजिए।
    View Solution
  • 4
    पानी से पूरी भरी हुई एक अर्धगोलाकार टंकी को एक पाइप द्वारा $3 \frac{4}{7}$ लीटर प्रति सेकंड की दर से खाली किया जाता है। यदि टंकी का व्यास $3 m$ है, तो वह कितने समय में आधी खाली हो जाएगी? $(\pi = \frac{22}{7}$ लीजिए।$)$
    View Solution
  • 5
    एक शंकु के छिन्नक, जो $45 \ cm$ ऊँचा है, के सिरों की त्रिज्याएँ $28 \ cm$ और $7 \ cm$ हैं। इसका आयतन, वक्र पृष्ठीय क्षेत्रफल और संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7}$ लीजिए$)$
    View Solution
  • 6
    मॉडल बनाने वाली मिट्टी से ऊँचाई $24 \ cm$ और आधार त्रिज्या $6 \ cm$ वाला एक शंकु बनाया गया है। एक बच्चे ने इसे गोले के आकार में बदल दिया। गोले की त्रिज्या ज्ञात कीजिए।
    View Solution
  • 7
    एक खिलौना त्रिज्या $3.5 \ cm$ वाले एक शंकु के आकार का है, जो उसी त्रिज्या वाले एक अर्धगोले पर अध्यारोपित है। इस खिलौने की संपूर्ण ऊँचाई $15.5 \ cm$ है। इस खिलौने का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
    View Solution
  • 8
    एक घनाकार ब्लॉक के एक फलक को अंदर की ओर से काट कर एक अर्धगोलाकार गड्ढा इस प्रकार बनाया गया है कि अर्धगोले का व्यास घन के एक किनारे के बराबर है। शेष बचे ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7})$
    View Solution
  • 9
    कोई बर्तन एक खोखले अर्धगोले के आकार का है जिसके ऊपर एक खोखला बेलन अध्यारोपित है। अर्धगोले का व्यास $14 \ cm$ है और इस बर्तन $($पात्र$)$ की कुल ऊँचाई $13 \ cm$ है। इस बर्तन का आंतरिक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
    View Solution
  • 10
    भुजा $7 \ cm$ वाले एक घनाकार ब्लॉक के ऊपर एक अर्धगोला रखा हुआ है। अर्धगोले का अधिकतम व्यास क्या हो सकता है? इस प्रकार बने ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7})$
    View Solution