व्यास $1 \ cm$ वाली $8 \ cm$ लंबी ताँबे की एक छड़ को एकसमान मोटाई वाले $18 m$ लंबे एक तार के रूप में खींचा जाता $($बदला जाता$)$ है। तार की मोटाई ज्ञात कीजिए।
example-10
Download our app for free and get started
छड़ का आयतन $= \pi \times\left(\frac{1}{2}\right)^{2} \times 8 cm^3 = 2\ \pi cm^3$
समान आयतन वाले तार की लंबाई $= 18 m = 1800 \ cm$
यदि तार के अनुप्रस्थ काट $($cross$-$section$)$ की त्रिज्या $r$ है, तो तार का आयतन $= \pi \times \mathrm{r}^{2} \times 1800 \ cm^{3 }$
अतः $\pi \times r^{2} \times 1800 = 2\pi$
अर्थात् $r^2 = \frac{1}{900}$
अर्थात् $r = \frac{1}{30} \ cm$
अतः, तार के अनुप्रस्थ काट का व्यास, तार की चौड़ाई $\frac{1}{15} \ cm,$ अर्थात् $0.67 \ mm ($लगभग$)$ है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
मॉडल बनाने वाली मिट्टी से ऊँचाई $24 \ cm$ और आधार त्रिज्या $6 \ cm$ वाला एक शंकु बनाया गया है। एक बच्चे ने इसे गोले के आकार में बदल दिया। गोले की त्रिज्या ज्ञात कीजिए।
भुजा $7 \ cm$ वाले एक घनाकार ब्लॉक के ऊपर एक अर्धगोला रखा हुआ है। अर्धगोले का अधिकतम व्यास क्या हो सकता है? इस प्रकार बने ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7})$
एक जूस $($juice$)$ बेचने वाला अपने ग्राहकों को आकृति में दर्शाए गिलासों से जूस देता था। बेलनाकार गिलास का आंतरिक व्यास $5 \ cm$ था, परंतु गिलास के निचले आधार $($तली$)$ में एक उभरा हुआ अर्धगोला था, जिससे गिलास की धारिता कम हो जाती थी। यदि एक गिलास की ऊँचाई $10 \ cm$ थी, तो गिलास की आभासी $($apparent$)$ धारिता तथा उसकी वास्तविक धारिता ज्ञात कीजिए। $(\pi = 3.14$ लीजिए।$)$
एक खिलौना त्रिज्या $3.5 \ cm$ वाले एक शंकु के आकार का है, जो उसी त्रिज्या वाले एक अर्धगोले पर अध्यारोपित है। इस खिलौने की संपूर्ण ऊँचाई $15.5 \ cm$ है। इस खिलौने का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
एक ठोस खिलौना एक अर्धगोले के आकार का है जिस पर एक लंब वृत्तीय शंकु आरोपित है। इस शंकु की ऊँचाई $2 \ cm$ है और आधार का व्यास $4 \ cm$ है। इस खिलौने का आयतन निर्धारित कीजिए। यदि एक लंब वृत्तीय बेलन इस खिलौने के परिगत हो तो बेलन और खिलौने के आयतनों का अंतर ज्ञात कीजिए। $(\pi = 3.14$ लीजिए।$)$
एक शंकु के छिन्नक, जो $45 \ cm$ ऊँचा है, के सिरों की त्रिज्याएँ $28 \ cm$ और $7 \ cm$ हैं। इसका आयतन, वक्र पृष्ठीय क्षेत्रफल और संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7}$ लीजिए$)$
पानी से पूरी भरी हुई एक अर्धगोलाकार टंकी को एक पाइप द्वारा $3 \frac{4}{7}$ लीटर प्रति सेकंड की दर से खाली किया जाता है। यदि टंकी का व्यास $3 m$ है, तो वह कितने समय में आधी खाली हो जाएगी? $(\pi = \frac{22}{7}$ लीजिए।$)$
कोई बर्तन एक खोखले अर्धगोले के आकार का है जिसके ऊपर एक खोखला बेलन अध्यारोपित है। अर्धगोले का व्यास $14 \ cm$ है और इस बर्तन $($पात्र$)$ की कुल ऊँचाई $13 \ cm$ है। इस बर्तन का आंतरिक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हनुमप्पा और उसकी पत्नी गंगाम्मा गन्ने के रस से गुड़ बना रहे हैं। उन्होंने गन्ने के रस को गर्म करके राब $($शीरा$)$ बना ली है, जिसे शंकु के छिन्नक के आकार के साँचों में डाला जाता है, जिनमें से प्रत्येक के दोनों वृत्तीय फलकों के व्यास क्रमशः $30 \ cm $ और $35 \ cm$ हैं तथा साँचे की ऊर्ध्वाधर ऊँचाई $14 \ cm$ है $($देखिए आकृति$)$। यदि $1 \ cm^3$ राब का द्रव्यमान लगभग $1.2 g$ है तो प्रत्येक साँचे में भरी जा सकने वाली राब का द्रव्यमान ज्ञात करें। $\pi=\frac{22}{7}$ लीजिए
सेल्वी के घर की छत पर बेलन के आकार की एक टंकी है। इस टंकी में एक भूमिगत टंकी में भरे पानी को पंप द्वारा पहुँचा कर टंकी को भरा जाता है। यह भूमिगत टंकी एक घनाभ के आकार की है, जिसकी विमाएँ $1.57 m \times 1.44 m \times 95 \ cm$ हैं। छत की टंकी की त्रिज्या $60 \ cm$ है और ऊँचाई $95 \ cm $ है। यदि भूमिगत टंकी पानी से पूरी भरी हुई थी, तो उससे छत की टंकी को पूरा भरने के बाद भूमिगत टंकी में पानी कितनी ऊँचाई तक रह जाएगा? छत की टंकी की धारिता की भूमिगत टंकी की धारिता से तुलना कीजिए। $(\pi = 3.14$ लीजिए।$)$