एक $A.P.$ में $a = 2, d = 8$ और $S_n = 90$ दिया है। $n$ और $a_n$ ज्ञात कीजिए।
Exercise-5.3-3(6)
Download our app for free and get started
यहाँ, $a = 2, d = 8, S_n= 90$
$S_n=\frac{n}{2}[2\times 2 + (n - 1) d]$
$\Rightarrow 180 = n [2\times 2 (n - 1)\times 8]$
$\Rightarrow 180 = n (8n - 4)$
$\Rightarrow 180 = 8n^2- 4n$
$\Rightarrow 8n^2 - 4n - 180 = 0$
$\Rightarrow 2n^2- n - 45 = 0$
$\Rightarrow 2n (n - 5) (2n + 9) = 0$
$\Rightarrow n - 5 = 0, 2n + 9 = 0$
$\Rightarrow n = 5,n=\frac{-9}{2}$
परन्तु पदों की संख्या ऋणात्मक नहीं हो सकती
$\therefore n = 5$
$a_5= a+ 4d$
$= 2 + 4\times 8$
अत:, $n = 5, a_n= 34$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*