फलन की एकैक (Injective) तथा आच्छादी (Surjective) गुण की जाँच कीजिए:
$f(x)=x^{2} $ द्वारा प्रदत्त f : $\mathbf{Z} \rightarrow \mathbf{Z}$ फलन है।
Exercise-1.2-2(2)
Download our app for free and get startedPlay store
फलन f: Z $ \rightarrow $ Z में,
$f(x)=x^{2}, \forall x \in Z$
द्वारा परिभाषित फलन है।
चूँकि $f(-1)=f(1)=1$ लेकिन $-1 \neq 1 \mid$ अतः Z एकेकी फलन नहीं है।
अब, पुनः $-2 \in Z$ के लिए Z में कोई $x \in Z$ इस प्रकार नहीं है कि $f(x)=-2$, अर्थात् $x^{2}=-2$ अतः f आच्छादक फलन नहीं है।
इसलिए f न तो एकैकी फलन है और न ही आच्छादक फलन है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    किसी प्रदत्त अरिक्त समुच्चय $X$ के लिए एक द्विआधारी संक्रिया $*: P(X) \times P(X) \rightarrow P(X)$ पर विचार कीजिए, जो $A * B = A \cap B, \forall A, B \in P(X)$ द्वारा परिभाषित है, जहाँ $P(X)$ समुच्चय $X$ का घात समुच्चय $($Power set$)$ है। सिद्ध कीजिए कि इस संक्रिया का तत्समक अवयव $X$ है तथा संक्रिया $*$ के लिए $P(X)$ में केवल $X$ व्युत्क्रमणीय अवयव है।
    View Solution
  • 2
    मान लीजिए कि A तथा B दो समुच्चय हैं। सिद्ध कीजिए कि f : $\mathrm{A} \times \mathrm{B} \rightarrow \mathrm{B} \times \mathrm{A}$, इस प्रकार कि f(a, b) = (b, a) एक एकैकी आच्छादी (bijective) फलन है।
    View Solution
  • 3
    दो फलनों f: N $ \rightarrow$ Z तथा g : Z $ \rightarrow$ Z के उदाहरण दीजिए जो इस प्रकार हों कि, gof एकैक है परंतु g एकैक नहीं है।
    View Solution
  • 4
    सिद्ध कीजिए कि f : R $ \rightarrow$ {x $\in$ R: - 1 < x < 1}, जहाँ f(x) = $\frac{x}{1+|x|}$, x $\in$ R द्वारा परिभाषित फलन एकैकी तथा आच्छादक है।
    View Solution
  • 5
    फलन की एकैक (Injective) तथा आच्छादी (Surjective) गुण की जाँच कीजिए:
    $f(x)=x^{2}$ द्वारा प्रदत्त f: $\mathbf{N} \rightarrow \mathbf{N}$ फलन है।
    View Solution
  • 6
    सिद्ध कीजिए कि $f: \mathbf{R} \rightarrow \mathbf{R} \text {, }$

    द्वारा प्रदत्त चिहन फलन न तो एकैकी है और न आच्छादक है।
    View Solution
  • 7
    ऐसे संबंध का उदाहरण दीजिए, जो सममित हो परंतु न तो स्वतुल्य हो और न संक्रामक हो।
    View Solution
  • 8
    सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ एकैकी तथा आच्छादक है, जहाँ $\mathbf{R}_{*}$सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $\mathbf{R}_{*}$ को N से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $\mathbf{R}_{\boldsymbol{*}}$ ही रहे, तो भी क्या यह परिणाम सत्य होगा?
    View Solution
  • 9
    मान लीजिए कि $f : W \rightarrow W, f(n) = n - 1$, यदि $n$ विषम है तथा $f(n) = n + 1,$ यदि $n$ सम है, द्वारा परिभाषित है। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। f का प्रतिलोम ज्ञात कीजिए। यहाँ $W$ समस्त पूर्णांकों का समुच्चय है।
    View Solution
  • 10
    सिद्ध कीजिए कि $f(x)=[x]$ द्वारा प्रदत्त महत्तम पूर्णांक फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, न तो एकैकी है और न आच्छादक है, जहाँ $[x], x$ से कम या उसके बराबर महत्तम पूर्णांक को निरूपित करता है।
    View Solution