सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ एकैकी तथा आच्छादक है, जहाँ $\mathbf{R}_{*}$सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $\mathbf{R}_{*}$ को N से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $\mathbf{R}_{\boldsymbol{*}}$ ही रहे, तो भी क्या यह परिणाम सत्य होगा?
Exercise-1.2-1
Download our app for free and get startedPlay store
दिया गया फलन f: $ R_{*} \rightarrow R_{*} $ में, $ f(x)=\frac{1}{x}, \forall x \in R_{\star}$ द्वारा परिभाषित फलन है। मान लीजिए x, y $\in R_{\star}$ इस प्रकार है कि $f(x)=f(y) \Rightarrow \frac{1}{x}=\frac{1}{y} \Rightarrow x=y$
$\therefore f $ एकैकी फलन है। चूँकि प्रत्येक $y \in R_{\star} $ के लिए $x=\frac{1}{y} \in R_{*}$
इस प्रकार है कि
$ f(x)=f\left(\frac{1}{y}\right)=\frac{1}{\left(\frac{1}{y}\right)}=y $
अतः f आच्छादक फलन है।
$\therefore$ फलन f एकैकी आच्छादक फलन है।
पुनः मान लीजिए $ g: N \rightarrow R_{\star}$ में, $g(x)=\frac{1}{x}, \forall x \in N$
द्वारा परिभाषित फलन है। मान लीजिए $x, y \in N$ इस प्रकार है कि
$ f(x)=f(y) \Rightarrow \frac{1}{x}=\frac{1}{y} \Rightarrow x=y $
$\therefore$ g एकैकी फलन है। अब, चूँकि $ 12 \in R_{*}$ के लिए N में कोई अवयव $x \in N$
इस प्रकार नहीं है कि
$g(x)=\frac{1}{12}$
अतः g एकैकी फलन है लेकिन आच्छादक फलन नहीं है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    मान लीजिए कि A तथा B दो समुच्चय हैं। सिद्ध कीजिए कि f : $\mathrm{A} \times \mathrm{B} \rightarrow \mathrm{B} \times \mathrm{A}$, इस प्रकार कि f(a, b) = (b, a) एक एकैकी आच्छादी (bijective) फलन है।
    View Solution
  • 2
    दो फलनों f : N $\rightarrow$ N तथा g : N $\rightarrow$ N के उदाहरण दीजिए, जो इस प्रकार हों कि gof आच्छादक है किंतु f आच्छादक नहीं है।
    View Solution
  • 3
    सिद्ध कीजिए कि $f: \mathbf{R} \rightarrow \mathbf{R} \text {, }$

    द्वारा प्रदत्त चिहन फलन न तो एकैकी है और न आच्छादक है।
    View Solution
  • 4
    मान लीजिए कि $f : W \rightarrow W, f(n) = n - 1$, यदि $n$ विषम है तथा $f(n) = n + 1,$ यदि $n$ सम है, द्वारा परिभाषित है। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। f का प्रतिलोम ज्ञात कीजिए। यहाँ $W$ समस्त पूर्णांकों का समुच्चय है।
    View Solution
  • 5
    मान लीजिए कि $f : R \rightarrow R, f(x) = 10x + 7$ द्वारा परिभाषित फलन है। एक ऐसा फलन $g : R \rightarrow R$ ज्ञात कीजिए जिसके लिए $gof = fog = I_R$ हो।
    View Solution
  • 6
    किसी प्रदत्त अरिक्त समुच्चय $X$ के लिए एक द्विआधारी संक्रिया $*: P(X) \times P(X) \rightarrow P(X)$ पर विचार कीजिए, जो $A * B = A \cap B, \forall A, B \in P(X)$ द्वारा परिभाषित है, जहाँ $P(X)$ समुच्चय $X$ का घात समुच्चय $($Power set$)$ है। सिद्ध कीजिए कि इस संक्रिया का तत्समक अवयव $X$ है तथा संक्रिया $*$ के लिए $P(X)$ में केवल $X$ व्युत्क्रमणीय अवयव है।
    View Solution
  • 7
    फलन की एकैक (Injective) तथा आच्छादी (Surjective) गुण की जाँच कीजिए:
    $f(x)=x^{3}$ द्वारा प्रदत्त f : $ \mathbf{N} \rightarrow \mathbf{N}$ फलन है।
    View Solution
  • 8
    मान लीजिए कि $S = \{a, b, c\}$ तथा $T= \{1, 2, 3\}$ है। $S$ से $T$ तक के निम्नलिखित फलनों $F$ के लिए $F^{-1}$ ज्ञात कीजिए, यदि उसका अस्तित्व है:
    1. $F = \{(a, 3),(b, 2),(c, 1)\}$
    2. $F = \{(a, 2), (b, 1), (c, 1)\}$
    View Solution
  • 9
    सिद्ध कीजिए कि $f(x)=[x]$ द्वारा प्रदत्त महत्तम पूर्णांक फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, न तो एकैकी है और न आच्छादक है, जहाँ $[x], x$ से कम या उसके बराबर महत्तम पूर्णांक को निरूपित करता है।
    View Solution
  • 10
    मान लीजिए कि A = {1, 2, 3}, B = {4, 5, 6, 7} तथा f = {(1, 4), (2, 5), (3, 6)} A से B तक एक फलन है। सिद्ध कीजिए कि f एकैकी है।
    View Solution