$F : S \rightarrow T$
$F = \{(a, 2), (b, 1), (c, 1)\}$ द्वारा परिभाषित फलन है।
$\therefore F(a) = 2, F(b) = 1, F(c) = 1$
चूँकि $F(b) = F(c) = 1$ अतः $F$ एकैकी फलन नहीं है। अतः $F$ प्रतिलोमीय फलन नहीं है। अतः $F^{-1}$ विद्यमान नहीं है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
मान लीजिए कि $f : R \rightarrow R, f(x) = 10x + 7$ द्वारा परिभाषित फलन है। एक ऐसा फलन $g : R \rightarrow R$ ज्ञात कीजिए जिसके लिए $gof = fog = I_R$ हो।
सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ एकैकी तथा आच्छादक है, जहाँ $\mathbf{R}_{*}$सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $\mathbf{R}_{*}$ को N से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $\mathbf{R}_{\boldsymbol{*}}$ ही रहे, तो भी क्या यह परिणाम सत्य होगा?
निम्नलिखित में से प्रत्येक स्थिति में बतलाइए कि क्या दिए हुए फलन एकैकी, आच्छादक अथवा एकैकी आच्छादी $($bijective$)$ हैं। अपने उत्तर का औचित्य भी बतलाइए।
$f(x) = 3 - 4x$ द्वारा परिभाषित फलन $f: R \rightarrow R$ है।
$f(x) = 1 + x^2$ द्वारा परिभाषित फलन $f: R \rightarrow R$ है।
सिद्ध कीजिए कि $f(x)=|x|$ द्वारा प्रदत्त मापांक फलन f: $\mathbf{R} \rightarrow \mathbf{R}$, न तो एकैकी है और न आच्छादक है, जहाँ |x| बराबर x, यदि x धन या शून्य है तथा |x| बराबर -x, यदि x ऋण है।
मान लीजिए कि A तथा B दो समुच्चय हैं। सिद्ध कीजिए कि f : $\mathrm{A} \times \mathrm{B} \rightarrow \mathrm{B} \times \mathrm{A}$, इस प्रकार कि f(a, b) = (b, a) एक एकैकी आच्छादी (bijective) फलन है।