मान लीजिए कि समुच्चय A = {1, 2, 3, 4, 5, 6, 7} में R = {(a, b): a तथा b दोनों ही या तो विषम हैं या सम हैं} द्वारा परिभाषित एक संबंध है। सिद्ध कीजिए कि R एक तुल्यता संबंध है। साथ ही सिद्ध कीजिए कि उपसमुच्चय {1, 3, 5, 7} के सभी अवयव एक दूसरे से संबंधित है, और उपसमुच्चय {2, 4, 6} के सभी अवयव एक दूसरे से संबंधित है, परंतु उपसमुच्चय {1, 3, 5, 7} का कोई भी अवयव उपसमुच्चय {2, 4, 6} के किसी भी अवयव से संबंधित नहीं है।
example-6
Download our app for free and get startedPlay store
A का प्रदत्त कोई अवयव a या तो विषम है या सम है, अतएव (a, a) $\in \mathrm{R}$. इसके अतिरिक्त (a, b) $\in \mathrm{R} \Rightarrow a$ तथा b दोनों ही, या तो विषम हैं या सम हैं $\Rightarrow(b, a) \in \mathrm{R}.$ इसी प्रकार (a, b)$ \in \mathrm{R}$ तथा (b, c)$ \in \mathrm{R} \Rightarrow$ अवयव a, b, c, सभी या तो विषम हैं या सम हैं $ \Rightarrow(a, c) \in \mathrm{R}$. अतः R एक तुल्यता संबंध है। पुनः {1, 3, 5, 7} के सभी अवयव एक दूसरे से संबंधित हैं, क्योंकि इस उपसमुच्चय के सभी अवयव विषम हैं। इसी प्रकार {2, 4, 6} के सभी अवयव एक दूसरे से संबंधित हैं, क्योंकि ये सभी सम हैं। साथ ही उपसमुच्चय {1, 3, 5, 7} का कोई भी अवयव {2, 4, 6} के किसी भी अवयव से संबंधित नहीं हो सकता है, क्योंकि {1, 3, 5, 7} के अवयव विषम हैं, जब कि {2, 4, 6}, के अवयव सम हैं।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    मान लीजिए कि A किसी बालकों के स्कूल के सभी विद्यार्थियों का समुच्चय है। दर्शाइए कि R = (a, b): a, b की बहन है द्वारा प्रदत्त संबंध एक रिक्त संबंध है तथा $\mathrm{R}^{\prime}=\{(a, b) : a$ तथा b की ऊँचाईयों का अंतर 3 मीटर से कम है द्वारा प्रदत्त संबंध एक सार्वत्रिक संबंध है।
    View Solution
  • 2
    सिद्ध कीजिए कि R में धन संक्रिया '+' के लिए - a का प्रतिलोम a है और R में गुणा संक्रिया 'x' के लिए $a \neq 0$ का प्रतिलोम $\frac{1}{a}$ है।
    View Solution
  • 3
    यदि $ f: \mathbf{R} \rightarrow \mathbf{R}$ तथा $g: \mathbf{R} \rightarrow \mathbf{R}$ फलन क्रमशः $f(x)=\cos x$ तथा $g(x)=3 x^{2}$ द्वारा परिभाषित है तो gof और fog ज्ञात कीजिए। सिद्ध कीजिए gof $\neq fog$.
    View Solution
  • 4
    सिद्ध कीजिए कि यदि f: $ \mathrm{A} \rightarrow \mathrm{B}$ तथा $g: \mathrm{B} \rightarrow \mathrm{C}$ एकैकी हैं, तो $g o f: \mathrm{A} \rightarrow \mathrm{C}$ भी एकैकी है।
    View Solution
  • 5
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $Z^{+ }$ में, संक्रिया $ *, a * b=|a-b|$ द्वारा परिभाषित
    View Solution
  • 6
    सिद्ध कीजिए कि पूर्णांकों के समुच्चय Z में R = {(a, b) : संख्या 2, (a - b) को विभाजित करती है} द्वारा प्रदत्त संबंध एक तुल्यता संबंध है।
    View Solution
  • 7
    मान लीजिए कि$ f : N \rightarrow R, f(x) = 4x^{2 }+ 12x + 15$ द्वारा परिभाषित एक फलन है। सिद्ध कीजिए कि $f : N \rightarrow S,$ जहाँ $S, f$ का परिसर है, व्युत्क्रमणीय है। $f$ का प्रतिलोम भी ज्ञात कीजिए।
    View Solution
  • 8
    मान लीजिए कि $\mathrm{Y}=\left\{n^{2}: n \in \mathrm{N}\right\} \subset \mathrm{N}$ है। फलन $f : \mathrm{N} \rightarrow \mathrm{Y}$ जहाँ $f(n) = n^2$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। $f$ का प्रतिलोम भी ज्ञात कीजिए।
    View Solution
  • 9
    निर्धारित कीजिए कि समुच्चय R में प्रदत्त निम्नलिखित द्विआधारी संक्रियाओं में से कौन सी साहचर्य हैं और कौन सी क्रमविनिमेय हैं।
    1. a $* $ b = 1, $\forall$ a, b $\in$ R
    2. a $* $ b = $\frac{(a+b)}{2}$ $\forall$ a, b $\in$ R
    View Solution
  • 10
    यदि gof आच्छदक है, तो क्या f तथा g दोनों अनिवार्यतः आच्छादक हैं?
    View Solution