यदि gof आच्छदक है, तो क्या f तथा g दोनों अनिवार्यतः आच्छादक हैं?
example-21
Download our app for free and get startedPlay store
f : {1, 2, 3, 4} $\rightarrow$ {1, 2, 3, 4} तथा g : {1, 2, 3, 4}$ \rightarrow$ {1, 2, 3} पर विचार कीजिए. जो. क्रमशः f(1) = 1, f(2) = 2, f(3) = f(4) = 3, g(1) = 1, g(2) = 2 तथा g(3) = g(4) = 3. द्वारा परिभाषित हैं। यहाँ सरलता से देखा जा सकता है कि g of आच्छादक है, किंतु f आच्छादक नहीं है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    मान लीजिए कि P किसी प्रदत्त समुच्चय X के समस्त उप समुच्चयों का, समुच्चय है। सिद्ध कीजिए कि $\cup: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P},(\mathrm{A}, \mathrm{B}) \rightarrow \mathrm{A} \cup \mathrm{B}$ द्वारा प्रदत्त तथा $\cap: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P}(\mathrm{A}, \mathrm{B}) \rightarrow \mathrm{A} \cap \mathrm{B}$ द्वारा परिभाषित फलन, P में द्विआधारी संक्रियाएँ हैं।
    View Solution
  • 2
    मान लीजिए कि f :X $\rightarrow$ Y एक फलन है। X में R = {(a, b) : f(a) = f(b)} द्वारा प्रदत्त एक संबंध R परिभाषित कीजिए। जाँचिए कि क्या R एक तुल्यता संबंध है।
    View Solution
  • 3
    सिद्ध कीजिए कि $f(x) = x^3$ द्वारा प्रदत्त फलन $f: R \rightarrow R$ एकैक $($Injective$)$ है।
    View Solution
  • 4
    सिद्ध कीजिए कि N में धन संक्रिया + के लिए $a \in \mathbf{N}$ का प्रतिलोम - a नहीं है और N में गुणा संक्रिया x के लिए $a \in \mathbf{N}, a \neq 1$ का प्रतिलोम $\frac{1}{a}$ नहीं है।
    View Solution
  • 5
    दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
    a $*$ b = a + ab
    View Solution
  • 6
    समुच्चय $(1, 2, 3, ..., n)$ से स्वयं तक के समस्त आच्छादक फलनों की संख्या ज्ञात कीजिए।
    View Solution
  • 7
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $Z^+$ में, संक्रिया $ *, a * b=a $ द्वारा परिभाषित
    View Solution
  • 8
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $\mathbf{Z}^{+} $ में, $ a * b=a-b$ द्वारा परिभाषित संक्रिया $*$
    View Solution
  • 9
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $Z^{+ }$ में, संक्रिया $ *, a * b=|a-b|$ द्वारा परिभाषित
    View Solution
  • 10
    $f : {1, 2, 3} \rightarrow {a, b, c}$ तथा $g : {a, b, c} \rightarrow$ {सेब, गेंद, बिल्ली} $f(1) = a, f(2) = b, f(3) = c, g(a) =$ सेब, $g(b) =$ गेंद तथा $g(c) =$ बिल्ली द्वारा परिभाषित फलनों पर विचार कीजिए। सिद्ध कीजिए कि $f, g $और $g\ of$ व्युत्क्रमणीय हैं। f$^{-1}, g^{-1}$ तथा $(gof)^{-1}$ ज्ञात कीजिए तथा प्रमाणित कीजिए कि $(g\ of)^{-1}=f^{-1} o g^{-1}$ है।
    View Solution