मान लीजिए कि $\mathrm{Y}=\left\{n^{2}: n \in \mathrm{N}\right\} \subset \mathrm{N}$ है। फलन $f : \mathrm{N} \rightarrow \mathrm{Y}$ जहाँ $f(n) = n^2$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। $f$ का प्रतिलोम भी ज्ञात कीजिए।
example-24
Download our app for free and get startedPlay store
$Y$ का एक स्वेच्छ अवयव $y, n^2$ के रूप का है जहाँ $n \in N.$
इसका तात्पर्य यह है कि $n = \sqrt{y}$ से $g(y)=\sqrt{y}$ द्वारा परिभाषित एक फलन $g: \mathrm{Y} \rightarrow \mathrm{N}$ प्राप्त होता है।
अब $ g of(n)=g\left(n^{2}\right)=\sqrt{n^{2}}=n$ और $f o g(y)=f(\sqrt{y})=(\sqrt{y})^{2}=y,$
जिससे प्रमाणित होता है कि $ go f=\mathrm{I}_{\mathrm{N}}$ तथा $f o g=\mathrm{I}_{\mathrm{Y}}$ है।
अतः $f$ व्युत्क्रमणीय है तथा $f^{-1}=g.$
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध कीजिए कि R में धन संक्रिया '+' के लिए - a का प्रतिलोम a है और R में गुणा संक्रिया 'x' के लिए $a \neq 0$ का प्रतिलोम $\frac{1}{a}$ है।
    View Solution
  • 2

    सिद्ध कीजिए कि अंतर (व्यवकलन) तथा भाग N में द्विआधारी संक्रिया नहीं है।

    View Solution
  • 3
    सिद्ध कीजिए कि N में धन संक्रिया + के लिए $a \in \mathbf{N}$ का प्रतिलोम - a नहीं है और N में गुणा संक्रिया x के लिए $a \in \mathbf{N}, a \neq 1$ का प्रतिलोम $\frac{1}{a}$ नहीं है।
    View Solution
  • 4
    सिद्ध कीजिए कि {1, 2} में ऐसी द्विआधारी संक्रियाओं की संख्या केवल एक है, जिसका तत्समक 1 हैं तथा जिसके अंतर्गत 2 का प्रतिलोम 2 है।
    View Solution
  • 5
    $f : {1, 2, 3} \rightarrow {a, b, c}$ तथा $g : {a, b, c} \rightarrow$ {सेब, गेंद, बिल्ली} $f(1) = a, f(2) = b, f(3) = c, g(a) =$ सेब, $g(b) =$ गेंद तथा $g(c) =$ बिल्ली द्वारा परिभाषित फलनों पर विचार कीजिए। सिद्ध कीजिए कि $f, g $और $g\ of$ व्युत्क्रमणीय हैं। f$^{-1}, g^{-1}$ तथा $(gof)^{-1}$ ज्ञात कीजिए तथा प्रमाणित कीजिए कि $(g\ of)^{-1}=f^{-1} o g^{-1}$ है।
    View Solution
  • 6
    समुच्चय $(1, 2, 3, ..., n)$ से स्वयं तक के समस्त आच्छादक फलनों की संख्या ज्ञात कीजिए।
    View Solution
  • 7
    दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
    a $*$ b = a + ab
    View Solution
  • 8
    मान लीजिए कि f : $ \mathbf{N} \rightarrow \mathrm{Y}$, f(x) = 4x + 3, द्वारा परिभाषित एक फलन है, जहाँ Y = $y \in \mathbf{N}: y=4 x+3$ किसी x $\in \mathbf{N}$ के लिए सिद्ध कीजिए कि f व्युत्क्रमणीय है। प्रतिलोम फलन भी ज्ञात कीजिए।
    View Solution
  • 9
    यदि $f(x)=\frac{3 x+4}{5 x-7}$ द्वारा परिभाषित फलन $f: \mathbf{R}-\left\{\frac{7}{5}\right\} \rightarrow \mathbf{R}-\left\{\frac{3}{5}\right\}$ तथा $g(x)=\frac{7 x+4}{5 x-3}$ द्वारा परिभाषित फलन $g: \mathbf{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathbf{R}-\left\{\frac{7}{5}\right\}$ प्रदत्त हैं, तो सिद्ध कीजिए कि $f o g=\mathrm{I}_{\mathrm{A}}$ तथा $g o f=\mathrm{I}_{\mathrm{B}}$, इस प्रकार कि $\mathrm{I}_{\mathrm{A}}(x)=x, \forall x \in \mathrm{A}$ और $\mathrm{I}_{\mathrm{B}}(x)=x, \forall x \in \mathrm{B}$, जहाँ $ \mathrm{A}=\mathbf{R}-\left\{\frac{3}{5}\right\}, \mathrm{B}=\mathbf{R}-\left\{\frac{7}{5}\right\}$ हैं। $\mathrm{I}_{\mathrm{A}}$ तथा $\mathrm{I}_{\mathrm{B}}$ को क्रमशः समुच्चय A तथा B पर तत्समक (Identity) फलन कहते हैं।
    View Solution
  • 10
    मान लीजिए कि A किसी बालकों के स्कूल के सभी विद्यार्थियों का समुच्चय है। दर्शाइए कि R = (a, b): a, b की बहन है द्वारा प्रदत्त संबंध एक रिक्त संबंध है तथा $\mathrm{R}^{\prime}=\{(a, b) : a$ तथा b की ऊँचाईयों का अंतर 3 मीटर से कम है द्वारा प्रदत्त संबंध एक सार्वत्रिक संबंध है।
    View Solution