यदि $f(x)=\frac{3 x+4}{5 x-7}$ द्वारा परिभाषित फलन $f: \mathbf{R}-\left\{\frac{7}{5}\right\} \rightarrow \mathbf{R}-\left\{\frac{3}{5}\right\}$ तथा $g(x)=\frac{7 x+4}{5 x-3}$ द्वारा परिभाषित फलन $g: \mathbf{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathbf{R}-\left\{\frac{7}{5}\right\}$ प्रदत्त हैं, तो सिद्ध कीजिए कि $f o g=\mathrm{I}_{\mathrm{A}}$ तथा $g o f=\mathrm{I}_{\mathrm{B}}$, इस प्रकार कि $\mathrm{I}_{\mathrm{A}}(x)=x, \forall x \in \mathrm{A}$ और $\mathrm{I}_{\mathrm{B}}(x)=x, \forall x \in \mathrm{B}$, जहाँ $ \mathrm{A}=\mathbf{R}-\left\{\frac{3}{5}\right\}, \mathrm{B}=\mathbf{R}-\left\{\frac{7}{5}\right\}$ हैं। $\mathrm{I}_{\mathrm{A}}$ तथा $\mathrm{I}_{\mathrm{B}}$ को क्रमशः समुच्चय A तथा B पर तत्समक (Identity) फलन कहते हैं।
example-17
Download our app for free and get startedPlay store
यहाँ पर
$g o f(x)=g\left(\frac{3 x+4}{5 x-7}\right)$ = $=\frac{7\left(\frac{(3 x+4)}{(5 x-7)}\right)+4}{5\left(\frac{(3 x+4)}{(5 x-7)}\right)-3}=\frac{21 x+28+20 x-28}{15 x+20-15 x+21}=\frac{41 x}{41}$ = x
इसी प्रकार, $f o g(x)=f\left(\frac{7 x+4}{5 x-3}\right)$ = $\frac{3\left(\frac{(7 x+4)}{(5 x-3)}\right)+4}{5\left(\frac{(7 x+4)}{(5 x-3)}\right)-7}=\frac{21 x+12+20 x-12}{35 x+20-35 x+21}=\frac{41 x}{41}$ = x 
अतः $g o f(x)=x, \forall x \in \mathrm{B}$और $f o g(x)=x, \forall x \in \mathrm{A}$, जिसका तात्पर्य यह है कि $go f=\mathrm{I}_{\mathrm{B}}$और $f o g=\mathrm{I}_{\mathrm{A}}$.
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध कीजिए कि (a, b) $\rightarrow$ अधिकतम {a, b} द्वारा परिभाषित $\vee: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ तथा (a, b) $ \rightarrow$ निम्नतम {a, b} द्वारा परिभाषित $\wedge: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ द्विआधारी संक्रियाएँ हैं।
    View Solution
  • 2
    सिद्ध कीजिए कि समुच्चय {1, 2, 3} में R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} द्वारा प्रदत्त संबंध स्वतुल्य है, परंतु न तो सममित है और न संक्रामक है।
    View Solution
  • 3
    मान लीजिए कि L किसी समतल में स्थित समस्त रेखाओं का एक समुच्चय है तथा $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right): \mathrm{L}_{1}, \mathrm{~L}_{2}\right.$ पर लंब है$\}$ समुच्चय $L$ में परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ सममित है किंत यह न तो स्वतल्य है और न संक्रामक है।
    View Solution
  • 4
    मान लीजिए कि f : {2, 3, 4, 5} $ \rightarrow$ {3, 4, 5, 9} और g : {3, 4, 5, 9} $ \rightarrow$ {7, 11, 15} दो फलन इस प्रकार हैं कि f(2) = 3, f(3) = 4, f(4) = f(5) = 5 और g (3) = g (4) = 7 तथा g (5) = g (9) = 11, तो gof ज्ञात कीजिए।
    View Solution
  • 5
    यदि $R_1$ तथा $R_2$ समुच्चय $A $में तुल्यता संबंध हैं, तो सिद्ध कीजिए कि$ R_1 \cap R_2$ भी एक तुल्यता संबंध है।
    View Solution
  • 6
    सिद्ध कीजिए कि R में शून्य (0) योग का तत्समक है तथा 1 गुणा का तत्समक है। परंतु संक्रियाओं $-: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ और $\div: \mathbf{R}_{*} \times \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ के लिए कोई तत्समक अवयव नहीं है।
    View Solution
  • 7
    सिद्ध कीजिए कि R में योग, अंतर और गुणा द्विआधारी संक्रियाएँ हैं, किंतु भाग R में द्विआधारी संक्रिया नहीं है। साथ ही सिद्ध कीजिए कि भाग ऋणेतर वास्तविक संख्याओं के समुच्चय R में द्विआधारी संक्रिया है।
    View Solution
  • 8
    $f : {1, 2, 3} \rightarrow {a, b, c}$ तथा $g : {a, b, c} \rightarrow$ {सेब, गेंद, बिल्ली} $f(1) = a, f(2) = b, f(3) = c, g(a) =$ सेब, $g(b) =$ गेंद तथा $g(c) =$ बिल्ली द्वारा परिभाषित फलनों पर विचार कीजिए। सिद्ध कीजिए कि $f, g $और $g\ of$ व्युत्क्रमणीय हैं। f$^{-1}, g^{-1}$ तथा $(gof)^{-1}$ ज्ञात कीजिए तथा प्रमाणित कीजिए कि $(g\ of)^{-1}=f^{-1} o g^{-1}$ है।
    View Solution
  • 9
    मान लीजिए कि $T$ किसी समतल में स्थित समस्त त्रिभुजों का एक समुच्चय है। समुच्चय $T$ में $ \mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}, \mathrm{~T}_{2}\right.\}$ के सर्वागंसम है एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।
    View Solution
  • 10
    मान लीजिए कि $A = {1, 2, 3}$ है। तब सिद्ध कीजिए कि ऐसे संबंधों की संख्या चार है, जिनमें $(1, 2)$ तथा $(2, 3)$ हैं और जो स्वतुल्य तथा संक्रामक तो हैं किंतु सममित नहीं हैं।
    View Solution