शांता किसी शेड $($shed$)$ में एक उद्योग चलाती है। यह शेड एक घनाभ के आकार का है जिस पर एक अर्धबेलन आरोपित है $($देखिए आकृति$)$। यदि इस शेड के आधार की विमाएँ $7 m \times 15 m$ हैं तथा घनाभाकार भाग की ऊँचाई $8 m$ है तो शेड में समावेशित हो सकने वाली हवा का आयतन ज्ञात कीजिए। पुन: यदि यह मान लें कि शेड में रखी मशीनरी $300 m^3$ स्थान घेरती है तथा शेड के अंदर $20$ श्रमिक हैं जिनमें से प्रत्येक $0.08 m^3$ के औसत से स्थान घेरता है तब शेड में कितनी हवा होगी?$ (\pi=\frac{22}{7}$ लीजिए$।)$
example-5
Download our app for free and get started
शेड के अंदर हवा का आयतन $($जब इसमें कोई व्यक्ति या मशीनरी नहीं है$)$ घनाभ के अंदर की हवा और अर्धबेलन के अंदर की हवा के आयतनों को मिला कर प्राप्त होगा। अब, घनाभ की लंबाई, चौड़ाई और ऊँचाई क्रमशः $15 m, 7 m$ और $8 m$ हैं।
साथ ही, अर्धबेलन का व्यास $7 m$ और ऊँचाई $15 m$ है।
इसलिए वांछित आयतन $=$ घनाभ का आयतन $+ \frac{1}{2}$ बेलन का आयतन
$= \left[15 \times 7 \times 8+\frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 15\right] m^3 = 1128.75 m^3$
आगे, मशीनरी द्वारा घेरा गया स्थान $= 300 m^3$
तथा $20$ श्रमिकों द्वारा घेरा गया स्थान $= 20 \times 0.08 m^3 = 1.6 m^3$
अतः, शेड में उस समय हवा का आयतन, जब उसमें मशीनरी और श्रमिक हैं
$= 1128.75 - (300.00 + 1.60) = 827.15 m^3$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक घनाकार ब्लॉक के एक फलक को अंदर की ओर से काट कर एक अर्धगोलाकार गड्ढा इस प्रकार बनाया गया है कि अर्धगोले का व्यास घन के एक किनारे के बराबर है। शेष बचे ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7})$
पानी से पूरी भरी हुई एक अर्धगोलाकार टंकी को एक पाइप द्वारा $3 \frac{4}{7}$ लीटर प्रति सेकंड की दर से खाली किया जाता है। यदि टंकी का व्यास $3 m$ है, तो वह कितने समय में आधी खाली हो जाएगी? $(\pi = \frac{22}{7}$ लीजिए।$)$
धातु से बनी एक खुली बाल्टी शंकु के एक छिन्नक के आकार की है, जो उसी धातु के बने एक खोखले बेलनाकार आधार पर आरोपित है $($देखिए आकृति$)$। इस बाल्टी के दोनों वृत्ताकार सिरों के व्यास $45 \ cm$ और $25 \ cm$ हैं तथा बाल्टी की कुल ऊर्ध्वाधर ऊँचाई $40 \ cm$ और बेलनाकार आधार की ऊँचाई $6 \ cm$ है। इस बाल्टी को बनाने में प्रयुक्त धातु की चादर का क्षेत्रफल ज्ञात कीजिए जबकि हम बाल्टी की मुठिया $($या हत्थे$)$ को इसमें सम्मिलित नहीं कर रहे हैं। साथ ही, उस पानी का आयतन ज्ञात कीजिए जो इस बाल्टी में धारण कर सकता है। $\pi=\frac{22}{7}$ लीजिए
मॉडल बनाने वाली मिट्टी से ऊँचाई $24 \ cm$ और आधार त्रिज्या $6 \ cm$ वाला एक शंकु बनाया गया है। एक बच्चे ने इसे गोले के आकार में बदल दिया। गोले की त्रिज्या ज्ञात कीजिए।
एक ठोस खिलौना एक अर्धगोले के आकार का है जिस पर एक लंब वृत्तीय शंकु आरोपित है। इस शंकु की ऊँचाई $2 \ cm$ है और आधार का व्यास $4 \ cm$ है। इस खिलौने का आयतन निर्धारित कीजिए। यदि एक लंब वृत्तीय बेलन इस खिलौने के परिगत हो तो बेलन और खिलौने के आयतनों का अंतर ज्ञात कीजिए। $(\pi = 3.14$ लीजिए।$)$
सेल्वी के घर की छत पर बेलन के आकार की एक टंकी है। इस टंकी में एक भूमिगत टंकी में भरे पानी को पंप द्वारा पहुँचा कर टंकी को भरा जाता है। यह भूमिगत टंकी एक घनाभ के आकार की है, जिसकी विमाएँ $1.57 m \times 1.44 m \times 95 \ cm$ हैं। छत की टंकी की त्रिज्या $60 \ cm$ है और ऊँचाई $95 \ cm $ है। यदि भूमिगत टंकी पानी से पूरी भरी हुई थी, तो उससे छत की टंकी को पूरा भरने के बाद भूमिगत टंकी में पानी कितनी ऊँचाई तक रह जाएगा? छत की टंकी की धारिता की भूमिगत टंकी की धारिता से तुलना कीजिए। $(\pi = 3.14$ लीजिए।$)$
व्यास $1 \ cm$ वाली $8 \ cm$ लंबी ताँबे की एक छड़ को एकसमान मोटाई वाले $18 m$ लंबे एक तार के रूप में खींचा जाता $($बदला जाता$)$ है। तार की मोटाई ज्ञात कीजिए।
हनुमप्पा और उसकी पत्नी गंगाम्मा गन्ने के रस से गुड़ बना रहे हैं। उन्होंने गन्ने के रस को गर्म करके राब $($शीरा$)$ बना ली है, जिसे शंकु के छिन्नक के आकार के साँचों में डाला जाता है, जिनमें से प्रत्येक के दोनों वृत्तीय फलकों के व्यास क्रमशः $30 \ cm $ और $35 \ cm$ हैं तथा साँचे की ऊर्ध्वाधर ऊँचाई $14 \ cm$ है $($देखिए आकृति$)$। यदि $1 \ cm^3$ राब का द्रव्यमान लगभग $1.2 g$ है तो प्रत्येक साँचे में भरी जा सकने वाली राब का द्रव्यमान ज्ञात करें। $\pi=\frac{22}{7}$ लीजिए
कोई बर्तन एक खोखले अर्धगोले के आकार का है जिसके ऊपर एक खोखला बेलन अध्यारोपित है। अर्धगोले का व्यास $14 \ cm$ है और इस बर्तन $($पात्र$)$ की कुल ऊँचाई $13 \ cm$ है। इस बर्तन का आंतरिक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
एक शंकु के छिन्नक, जो $45 \ cm$ ऊँचा है, के सिरों की त्रिज्याएँ $28 \ cm$ और $7 \ cm$ हैं। इसका आयतन, वक्र पृष्ठीय क्षेत्रफल और संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7}$ लीजिए$)$