सिद्ध कीजिए कि किसी वृत्त का एक व्यास $AB$ उन सभी जीवाओं को समद्विभाजित करता है, जो बिंदु $A$ से खींची गई वृत्त की स्पर्श रेखा के समांतर हैं।
Exercise-9.3-10
Download our app for free and get startedPlay store
दिया गया है: केंद्र $O$ और $\text{AOB}$ व्यास वाला एक वृत्त है।
$\text{CAD}, A$ पर एक स्पर्श रेखा है, $EF \|$ स्पर्शरेखा $\text{CAD}$

सिद्ध करने के लिए: $AB$ किसी भी जीवा $EF$ को समद्विभाजित करता है
उपपत्ति: $OA$ त्रिज्या स्पर्शरेखा $\text{CAD}$ के लंबवत है।
$\therefore \angle1 = 90^\circ$
$CAD \| EF [$दिया गया$]$
$\therefore \angle1 = \angle2 = 90^\circ [$ वैकल्पिक आंतरिक कोण$]$
बिंदु $M$ व्यास पर है जो केंद्र $O$ से होकर जाता है।
$\because$ केंद्र से जीवा पर खींचा गया लंबवत जीवा को समद्विभाजित करता है।
अत: $AB$ किसी जीवा $EF$ को समद्विभाजित करता है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    यदि $d_1$ और $d_{2 }(d_{2 }> d_1)$ दो संकेंद्रीय वृत्तों के व्यास हैं तथा $c$ एक वृत्त की उस जीवा की लंबाई है, जो दूसरी वृत्त की स्पर्श रेखा है, तो सिद्ध कीजिए कि $d_{2}^{2} = c^2 + d_{1}^{2}$ है।
    View Solution
  • 2
    यदि a, b, c किसी समकोण त्रिभुज की भुजाएँ हैं, जिनमें से c कर्ण है, तो सिद्ध कीजिए कि उस वृत्त की त्रिज्या r, जो इस त्रिभुज की भुजाओं को स्पर्श करता है, r = $\frac{a+b-c}{2}$ से प्राप्त होती है।
    View Solution
  • 3
    दो संकेंद्रीय वृत्तों में से बाहरी वृत्त की त्रिज्या $5 \ cm$ है तथा इसकी $8 \ cm$ लंबी जीवा $AC$ आंतरिक वृत्त की स्पर्श रेखा है। आंतरिक वृत्त की त्रिज्या ज्ञात कीजिए।
    View Solution
  • 4

    आकृति में, AB और CD असमान त्रिज्याओं वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ हैं। सिद्ध कीजिए कि AB = CD हैं।

    View Solution
  • 5
    एक वृत्त की जीवा PQ, बिंदु R पर इस वृत्त की स्पर्श रेखा के समांतर है। सिद्ध कीजिए कि बिंदु R चाप PRQ को सम- द्विभाजित करता है।
    View Solution
  • 6
    उपरोक्त प्रश्न $5$ में, यदि दोनों वृत्तों की त्रिज्याएँ बराबर हों, तो सिद्ध कीजिए कि $AB = CD$ है।
    View Solution
  • 7
    केंद्र $O$ वाले एक वृत्त पर एक बाहरी बिंदु से दो स्पर्श रेखाएँ $PQ$ और $PR$ खींची गई हैं। सिद्ध कीजिए कि $\text{QORP}$ एक चक्रीय चतुर्भुज है।
    View Solution
  • 8
    यदि केंद्र $O$ वाले एक वृत्त के एक बाहरी बिंदु $B$ से दो स्पर्श रेखाएँ $BC$ और $BD$ इस प्रकार खींची जाएँ कि $\angle \text{DBC} = 120^\circ$ है, तो सिद्ध कीजिए कि $BC + BD = BO$ है, अर्थात् $BO = 2BC$ है।
    View Solution
  • 9

    आकृति में, दोनों वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ AB और CD परस्पर बिंदु E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि AB = CD है।

    View Solution
  • 10
    आकृति में, $BOA$ वृत्त का एक व्यास है तथा एक बिंदु $P$ पर खींची गई स्पर्श रेखा बढ़ाई गई $BA$ से $T$ पर मिलती है। यदि $\angle PBO = 30^{\circ}$ है, तो $\angle PTA$ भी $30^{\circ}$ के बराबर है।
    View Solution