यदि एक मात्रक सदिश $\vec{a}, \hat{i}$ के साथ $\frac{\pi}{3}, \hat{j}$ के साथ $\frac{\pi}{4}$ और $\hat{k}$ साथ एक न्यून कोण $\theta$ बनाता है तो $\theta$ का मान ज्ञात कीजिए और इसकी सहायता से $\vec{a}$ के घटक भी ज्ञात कीजिए।
Exercise-10.4-3
Download our app for free and get started
मान लीजिए $a$ मात्रक सदिश $\hat{\mathrm{i}}, \hat{{j}}$ तथा $\hat{{k}}$ के साथ क्रमश: $\alpha, \beta$ तथा $\gamma$ कोण बनाता है
तब$, \alpha = \frac{\pi}{3}, \beta = \frac{\pi}{4}$ तथा $\gamma = \theta\ ($दिया है।$)$
$\therefore \cos ^{2} \frac{\pi}{3}+\cos ^{2} \frac{\pi}{4} + \cos^2 \theta = 1$
$\Rightarrow \left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2} + \cos^2 \theta = 1$
$\Rightarrow \frac{1}{4}+\frac{1}{2} + \cos^2 \theta = 1 $
$\Rightarrow \cos^2 \theta = 1 - \frac{3}{4} $
$\Rightarrow \cos^2 \theta = \frac{4-3}{4} = \frac{1}{4}$
$\Rightarrow \cos \theta = \pm \frac{1}{\sqrt{4}} $
$\Rightarrow \cos \theta = \pm \frac{1}{2}$
$\cos \theta = \frac12\ (\cos \theta \neq -\frac{1}{2}, \because \theta$ एक न्यून कोण हैं।$)$
$\Rightarrow \theta = \cos ^{-1}\left(\frac{1}{2}\right) = \cos ^{-1}\left(\cos \frac{\pi}{3}\right)$
$\Rightarrow \theta = \frac{\pi}{3}$ तथा $a$ के घटक $\cos \frac{\pi}{3}, \cos \frac{\pi}{4}, \cos \frac{\pi}{3}$ हैं।
$\Rightarrow \frac12, \frac{1}{\sqrt{2}}, \frac{1}{2}$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक समांतर चतुर्भुज की संलग्न भुजाएँ $2 \hat{i}-4 \hat{j}+5 \hat{k}$ और $\hat{i}-2 \hat{j}-3 \hat{k}$ हैं। इसके विकर्ण के समांतर एक मात्रक सदिश ज्ञात कीजिए। इसका क्षेत्रफल भी ज्ञात कीजिए।
सदिश $\vec{a}+\vec{b}$ और $\vec{a}-\vec{b}$ की लंब दिशा में मात्रक सदिश ज्ञात कीजिए जहाँ $\vec{a}$ = $3 \hat{i}+2 \hat{j}+2 \hat{k}$ और $\vec{b}$ = $\hat{i}+2 \hat{j}-2 \hat{k}$ है।
दर्शाइए कि दिए हुए निम्नलिखित तीन सदिशों में से प्रत्येक मात्रक सदिश है, $\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k})$, $\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})$, $\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$ यह भी दर्शाइए कि ये सदिश परस्पर एक दूसरे के लंबवत् हैं।
मान लीजिए सदिश $\vec{a}, \vec{b}, \vec{c}$ क्रमश: $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$, $b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ के रूप में दिए हुए हैं तब दर्शाइए कि $\vec{a} \times(\vec{b}+\vec{c})$ = $\vec{a} \times \vec{b}$ + $\vec{a} \times \vec{c}$
सदिश $\hat{i}+\hat{j}+\hat{k}$ का, सदिशों $2 \hat{i}+4 \hat{j}-5 \hat{k}$ और $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ के योगफल की दिशा में मात्रक सदिश के साथ अदिश गुणनफल $1$ के बराबर है तो $\lambda$ का मान ज्ञात कीजिए।
दर्शाइए कि बिंदु $A, B$ और $C,$ जिनके स्थिति सदिश क्रमशः $\vec{a} = 3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b} = 2 \hat{i}-\hat{j}+\hat{k}$ और $\vec{c} = \hat{i}-3 \hat{j}-5 \hat{k}$ हैं, एक समकोण त्रिभुज के शीर्षों का निर्माण करते हैं।
यदि $\vec{a}, \vec{b}, \vec{c}$ मात्रक सदिश इस प्रकार है कि $\vec{a}+\vec{b}+\vec{c} = \overrightarrow{0}$ तो $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ का मान ज्ञात कीजिए।
यदि $\vec{a}, \vec{b}, \vec{c}$ समान परिमाणों वाले परस्पर लंबवत् सदिश हैं तो दर्शाइए कि सदिश $\vec{a}, \vec{b}, \vec{c}$ सदिशों $\vec{a}$, $\vec{b}$ तथा $\vec{c}$ के साथ बराबर झुका हुआ है।
दो बिंदुओं P$(2 \vec{a}+\vec{b})$ और Q$(\vec{a}-3 \vec{b})$ को मिलाने वाली रेखा को 1 : 2 के अनुपात मे बाह्य विभाजित करने वाले बिंदु R का स्थिति सदिश ज्ञात कीजिए। यह भी दर्शाइए कि बिंदु P रेखाखंड RQ का मध्य बिंदु है।