यह ज्ञात है कि एक महाविद्यालय के छात्रों में से $60\%$ छात्रावास में रहते हैं और $40\%$ छात्रावास में नहीं रहते हैं। पूर्ववर्ती वर्ष के परिणाम सूचित करते हैं कि छात्रावास में रहने वाले छात्रों में से $30\%$ और छात्रावास में न रहने वाले छात्रों में से $20\%$ छात्रों ने $A$ ग्रेड लिया। वर्ष के अन्त में महाविद्यालय के एक छात्र को यादृच्छया चुना गया और यह पाया गया है क उसे $A-$ग्रेड मिला है। इस बात कि क्या प्रायिकता है कि वह छात्र छात्रावास में रहने वाला है?
Exercise-13.3-3
Download our app for free and get startedPlay store
मान लीजिए घटना $E_1$ 'विद्यार्थी के छात्रावास में रहने की', $E_2$ घटना 'विद्यार्थी के छात्रावास में न रहने की' तथा घटना $E' A$ ग्रेड प्राप्त करने वाले विद्यार्थियों की संख्या' को निरूपित करता है। अर्थात् $E_1$ तथा $E_2$ घटनाएँ परस्पर अपवर्जी तथा परिपूर्ण घटनाएँ हैं।
$P(E_1) = 60\% = \frac{60}{100} = \frac{3}{5}$ तथा $P(E_2) = 40\% = \frac{40}{100}=\frac{2}{5}$
अतः $P\left(\frac{E}{E_{1}}\right) = 30\% = \frac{30}{100}=\frac{3}{10}$ तथा $P\left(\frac{E}{E_{2}}\right)= 20\% = \frac{20}{100} =\frac{2}{10}$
बेज प्रमेय के प्रयोग से,
$P\left(\frac{E_{1}}{E}\right) = \frac{P\left(\frac{E}{E_{1}}\right) P\left(E_{1}\right)}{P\left(\frac{E}{E_{1}}\right)$
$P\left(E_{1}\right)+P\left(\frac{E}{E_{2}}\right) P\left(E_{2}\right)} = \frac{\frac{3}{10} \times \frac{3}{5}}{\frac{3}{10} \times \frac{3}{5}+\frac{2}{10} \times \frac{2}{5}} = \frac{9}{9+4} = \frac{9}{13}$
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    एक बहु-विकल्पीय परीक्षा में 5 प्रश्न हैं जिनमें प्रत्येक के तीन संभावित उत्तर हैं। इसकी क्या प्रायिकता है कि एक विद्यार्थी केवल अनुमान लगा कर चार या अधिक प्रश्नों के सही उत्तर दे देगा?
    View Solution
  • 2
    एक प्रशिक्षक के पास 300 सत्य/असत्य प्रकार के आसान प्रश्न 200 सत्य/असत्य प्रकार के कठिन प्रश्न 500 बहु-विकल्पीय प्रकार के आसान प्रश्न और 400 बहु-विकल्पीय प्रकावर के कठिन प्रश्नों का संग्रह है। यदि प्रश्नों के संग्रह से एक प्रश्न यादृच्छया चुना जाता है, तो एक आसान प्रश्न की बहु-विकल्पीय होने की प्रायिकता क्या होगी?
    View Solution
  • 3
    यदि P(A) = 0.8, P(B) = 0.5 और $ P\left(\frac{B}{A}\right)$ = 0.4 ज्ञात कीजिए।
    1. P(A $ \cap$ B)
    2. $P\left(\frac{A}{B}\right)$
    3. P(A $\cup $ B)
    View Solution
  • 4
    दो थैले $I$ और $II$ दिए हैं। थैले $I$ में $3$ लाल और $4$ काली गेंदे हैं जब कि थैले $II$ में $5$ लाल और $6$ काली गेंदे हैं। किसी एक थैले में से यादृच्छया एक गेंद निकाली गई है जो कि लाल रंग की है। इस बात की क्या प्रायिकता है कि यह गेंद थैले $II$ से निकाली गई है?
    View Solution
  • 5
    एक न्याय्य सिक्का और एक अभिनत पासे को उछाला गया। मान लें A घटना सिक्के पर चित प्रकट होता है और B घटना पासे पर संख्या 3 प्रकट होती है को निरूपित करते हैं। निरीक्षण कीजिए कि घटनाएँ A और B स्वतंत्र हैं या नहीं?
    View Solution
  • 6
    तीन सिक्कों को उछाला गया है। मान लें E घटना तीन चित या तीन पट प्राप्त होना और F घटना न्यूनतम दो चित प्राप्त होना और G घटना अधिकतम दो पट प्राप्त होना को निरूपित करते हैं। युग्म (E, F), (E, G) और (F, G) में कौन-कौन से स्वतंत्र हैं? कौन-कौन से पराश्रित हैं?
    View Solution
  • 7
    थैला $I$ में $3$ लाल तथा $4$ काली गेंदें हैं तथा थैला $II$ से $4$ लाल और $5$ काली गेंदें हैं। एक गेंद को थैला $I$ से थैला $II$ में स्थानांतरित किया जाता है और तब एक गेंद थैला $II$ से निकाली जाती है। निकाली गई गेंद लाल रंग की है। स्थानांतरित गेंद की काली होने की प्रायिकता ज्ञात कीजिए।
    View Solution
  • 8
    कल्पना कीजिए कि $5\%$ पुरुषों और $0.25\%$ महिलाओं के बाल सफेद हैं। एक सफेद बालों वाले व्यक्ति को यादृच्छिक चुना गया है। इस व्यक्ति के पुरुष होने की प्रायिकता क्या है? यह मान लें कि पुरुषों और महिलाओं की संख्या समान है।
    View Solution
  • 9
    यदि P(A) = $ \frac{6}{11}$, P(B) = $ \frac{5}{11}$ और P(A $\cup$ B) = $\frac{7}{11}$, तो ज्ञात कीजिए।
    1. P(A $ \cap $ B)
    2. P$\left(\frac{A}{B}\right)$
    3. P$\left(\frac{B}{A}\right)$
    View Solution
  • 10
    सिद्ध कीजिए कि यदि E और F दो स्वतंत्र घटनाएँ हैं तो E और $\mathrm{F}^{\prime}$ भी स्वतंत्र होंगी।
    View Solution