$176 m$ की दूरी तय करने $($घूमने$)$ में, $1.54 m^2$ क्षेत्रफल वाले एक वृत्ताकार पहिये द्वारा लगाये जाने वाले चक्करों की संख्या ज्ञात कीजिए।
Exercise-11.4-18
Download our app for free and get started
त्रिज्या $r = 2\pi r n$ के साथ $n$ चक्करों में पहिया द्वारा तय की गई दूरी।
$\therefore 2\pi rn = 176 m ...(i)$
पहिया का क्षेत्रफल $($गोलाकार$) = 1.54 m^2$
$\Rightarrow \pi r^2 = 1.54$
$\Rightarrow r^2 = \frac { 1.54 } { \pi } = \frac { 154 \times 7 } { 22 \times 100 } = \frac { 7 \times 7 } { 10 \times 10 }$
$\Rightarrow r = 0.7 m$
Now, $2\pi rn = 176$
$\Rightarrow 2 \times \frac { 22 } { 7 } \times 0.7 \times n = 176 [$समीकरण $(i)$ से$]$
$\Rightarrow n = \frac { 176 \times 7 \times 10 } { 2 \times 22 \times 7 } = 40$
इस प्रकार, चक्करों की संख्या $40$ है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
$784 \ cm^2$ क्षेत्रफल वाले एक वर्गाकार गत्ते की शीट पर, अधिकतम माप की चार सर्वांगसम वृत्ताकार प्लेटें इस प्रकार रखी गयी हैं कि प्रत्येक वृत्ताकार प्लेट अन्य दो प्लेटों को स्पर्श करती है तथा वर्गाकार शीट की प्रत्येक भुजा दो वृत्ताकार प्लेटों को स्पर्श करती है। वर्गाकार शीट के उस भाग का क्षेत्रफल ज्ञात कीजिए जो वृत्ताकार प्लेटों द्वारा ढका नहीं गया है।
एक त्रिभुज $\text{ABC}$ के $A, B$ और $C$ शीर्षों को केंद्र मानकर तथा त्रिज्याएँ $5 \ cm$ लेकर आकृति में दर्शाए अनुसार चाप खींचे गये हैं। यदि $AB = 14 \ cm, BC = 48 \ cm$ और $CA = 50 \ cm$ है, तो छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए $(\pi = 3.14$ का प्रयोग कीजिए।$)$
बराबर त्रिज्या $7 \ cm$ त्रिज्या वाले चार वृत्ताकार गत्ते के टुकड़ों को एक कागज पर इस प्रकार रखा गया है कि प्रत्येक टुकड़ा अन्य दो टुकड़ों को स्पर्श करता है। इन टुकड़ों के बीच में परिबद्ध भाग का क्षेत्रफल ज्ञात कीजिए।
किसी कमरे के फर्श की विमाएँ $5 m \times 4 m$ हैं और इस पर वृत्ताकार टाइलें लगायी जाती हैं, जिनमें से प्रत्येक का व्यास $50 \ cm$ है, जैसा कि आकृति में दर्शाया गया है। फर्श के उस भाग का क्षेत्रफल ज्ञात कीजिए जिस पर टाइल नहीं लगी हैं $(\pi = 3.14$ का प्रयोग कीजिए$)$।
बराबर त्रिज्या $3.5 \ cm$ वाले तीन वृत्त इस प्रकार खींचे गये हैं कि इनमें से प्रत्येक अन्य दो वृत्तों को स्पर्श करता है। इन वृत्तों से परिबद्ध क्षेत्रफल ज्ञात कीजिए।
एक त्रिभुजाकार खेत की भुजाएँ $15m, 16m$ और $17m$ हैं। इस खेत में चरने के लिए, इसके तीनों कोनों से एक गाय, एक भैंस और एक घोड़े को अलग$-$अलग $7m$ लंबी रस्सियों से बाँध दिया गया है। खेत के उस भाग का क्षेत्रफल ज्ञात कीजिए जिसमें ये तीनों पशु चर नहीं पाएँगे।
किसी धनुर्विद्या $($या तीरंदाजी$)$ लक्ष्य के तीन क्षेत्र हैं, जो आकृति में दर्शाए अनुसार तीन संकेंद्रीय वृत्तों से बने हैं। यदि इन संकेंद्रीय वृत्तों के व्यास $1 : 2 : 3$ के अनुपात में हैं, तो इन तीनों क्षेत्रों के क्षेत्रफलों का अनुपात ज्ञात कीजिए।
आकृति में, $\text{ABCD}$ एक समलंब है, जिसमें $AB \| DC, AB = 18 \ cm, DC = 32 \ cm$ तथा $AB$ और $DC$ के बीच की दूरी $= 14 \ cm$ है। यदि $\text{A, B, C}$ और $D$ को केंद्र मानकर त्रिज्याओं $7 \ cm$ के चाप खींचे गये हैं, तो इस आकृति के छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए।