a $ * $ b = $ \frac{a^{b}}{4}$ दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
Exercise-1.4-10(5)
Download our app for free and get startedPlay store
परिमेय संख्याओं के समुच्चय Q में संक्रिया $ * $, a $ * $ b = $ \frac{a^{b}}{4}$ द्वारा परिभाषित है।
यदि $a * e=a, a \neq 0$ $ \Rightarrow$ $ \frac{a e}{4}=a, a \neq 0$
$\Rightarrow$ e = 4
पुनः e $ * $ a = a, a $\neq $ 0
$\Rightarrow $ $\frac{e a}{4}=a,$  a $\neq $ 0 $\Rightarrow $ e = 4
अतः Q में संक्रिया  a $ * $ b = $ \frac{a b}{4} $ के सापेक्ष e = 4 तत्समक अवयव है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $\mathbf{Z}^{+} $ में, $ a * b=a b$ द्वारा परिभाषित संक्रिया *
    View Solution
  • 2
    सिद्ध कीजिए कि {1, 2} में ऐसी द्विआधारी संक्रियाओं की संख्या केवल एक है, जिसका तत्समक 1 हैं तथा जिसके अंतर्गत 2 का प्रतिलोम 2 है।
    View Solution
  • 3
    सिद्ध कीजिए कि एक एकैकी फलन f : {1, 2, 3} $\rightarrow$ {1, 2, 3} अनिवार्य रूप से आच्छादक भी है।
    View Solution
  • 4
    समुच्चय $(1, 2, 3, ..., n)$ से स्वयं तक के समस्त आच्छादक फलनों की संख्या ज्ञात कीजिए।
    View Solution
  • 5
    सिद्ध कीजिए कि $+: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ तथा $\times: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ क्रमविनिमेय द्विआधारी संक्रियाएँ है, परंतु $-: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ तथा $\div: \mathbf{R}_{*} \times \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ क्रमविनिमेय नहीं हैं।
    View Solution
  • 6
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $\mathbf{Z}^{+} $ में, $ a * b=a-b$ द्वारा परिभाषित संक्रिया $*$
    View Solution
  • 7
    यदि $ f: \mathbf{R} \rightarrow \mathbf{R}$ तथा $g: \mathbf{R} \rightarrow \mathbf{R}$ फलन क्रमशः $f(x)=\cos x$ तथा $g(x)=3 x^{2}$ द्वारा परिभाषित है तो gof और fog ज्ञात कीजिए। सिद्ध कीजिए gof $\neq fog$.
    View Solution
  • 8
    मान लीजिए कि $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ है। मान लीजिए कि $X$ में $R_1 = (x, y) : x - y$ संख्या $3$ से भाज्य है द्वारा प्रदत्त एक संबंध $R_1$ है तथा $R_2 = (x, y) : \{x, y\} \subset \{1, 4, 7\}$ या $\{x, y\} \subset \{2, 5, 8\}$ या $\{(x, y\} \subset \{3, 6, 9\}$ द्वारा प्रदत्त $X$ में एक अन्य संबंध $R_2$ है। सिद्ध कीजिए कि $R_1 = R_2$ है।
    View Solution
  • 9
    सिद्ध कीजिए कि $f(x) = x^3$ द्वारा प्रदत्त फलन $f: R \rightarrow R$ एकैक $($Injective$)$ है।
    View Solution
  • 10
    मान लीजिए कि $\mathrm{Y}=\left\{n^{2}: n \in \mathrm{N}\right\} \subset \mathrm{N}$ है। फलन $f : \mathrm{N} \rightarrow \mathrm{Y}$ जहाँ $f(n) = n^2$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। $f$ का प्रतिलोम भी ज्ञात कीजिए।
    View Solution