सिद्ध कीजिए कि $+: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ तथा $\times: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ क्रमविनिमेय द्विआधारी संक्रियाएँ है, परंतु $-: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ तथा $\div: \mathbf{R}_{*} \times \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ क्रमविनिमेय नहीं हैं।
example-34
Download our app for free and get startedPlay store
क्योंकि a + b = b + a तथा $a \times b=b \times a, \forall a, b \in \mathbf{R},$ अतएव '+' तथा 'x' क्रमविनिमेय द्विआधारी संक्रियाएँ हैं। तथापि '-' क्रमविनिमेय नहीं है, क्योंकि $3-4 \neq 4-3.$
इसी प्रकार $3 \div 4 \neq 4 \div 3$, जिससे स्पष्ट होता है कि '$ \div$' क्रमविनिमेय नहीं है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध कीजिए कि आच्छादक फलन f : {1, 2, 3} $\rightarrow $ {1, 2, 3} सदैव एकैकी फलन होता है।
    View Solution
  • 2
    मान लीजिए कि$ f : N \rightarrow R, f(x) = 4x^{2 }+ 12x + 15$ द्वारा परिभाषित एक फलन है। सिद्ध कीजिए कि $f : N \rightarrow S,$ जहाँ $S, f$ का परिसर है, व्युत्क्रमणीय है। $f$ का प्रतिलोम भी ज्ञात कीजिए।
    View Solution
  • 3
    मान लीजिए कि $A = {1, 2, 3}$ है। तब सिद्ध कीजिए कि ऐसे संबंधों की संख्या चार है, जिनमें $(1, 2)$ तथा $(2, 3)$ हैं और जो स्वतुल्य तथा संक्रामक तो हैं किंतु सममित नहीं हैं।
    View Solution
  • 4
    a $ * $ b = $ \frac{a^{b}}{4}$ दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
    View Solution
  • 5
    मान लीजिए कि $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ है। मान लीजिए कि $X$ में $R_1 = (x, y) : x - y$ संख्या $3$ से भाज्य है द्वारा प्रदत्त एक संबंध $R_1$ है तथा $R_2 = (x, y) : \{x, y\} \subset \{1, 4, 7\}$ या $\{x, y\} \subset \{2, 5, 8\}$ या $\{(x, y\} \subset \{3, 6, 9\}$ द्वारा प्रदत्त $X$ में एक अन्य संबंध $R_2$ है। सिद्ध कीजिए कि $R_1 = R_2$ है।
    View Solution
  • 6
    यदि gof आच्छदक है, तो क्या f तथा g दोनों अनिवार्यतः आच्छादक हैं?
    View Solution
  • 7
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $R$ में, संक्रिया $ *, a * b=a b^{2}$ द्वारा परिभाषित
    View Solution
  • 8
    समुच्चय A = {1, 2, 3} से स्वयं तक सभी एकैकी फलन की संख्या ज्ञात कीजिए।
    View Solution
  • 9
    सिद्ध कीजिए कि $*: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R},(a, b) \rightarrow a+4 b^{2}$ द्वारा प्रदत्त एक द्विआधारी संक्रिया है।
    View Solution
  • 10
    यदि $ f: \mathbf{R} \rightarrow \mathbf{R}$ तथा $g: \mathbf{R} \rightarrow \mathbf{R}$ फलन क्रमशः $f(x)=\cos x$ तथा $g(x)=3 x^{2}$ द्वारा परिभाषित है तो gof और fog ज्ञात कीजिए। सिद्ध कीजिए gof $\neq fog$.
    View Solution