आकृति में, एक वृत्त पर दो स्पर्श रेखाएँ $PQ$ और $PR$ इस प्रकार खींची गई हैं कि $\angle RPQ = 30^\circ$ है। एक जीवा $RS$ स्पर्श रेखा $PQ$ के समांतर खींची जाती है। $\angle RQS$ ज्ञात कीजिए।
Exercise-9.4-7
Download our app for free and get started
दिया गया है $\angle RPQ = 30^\circ $और $PR$ और $PQ, P$ से एक ही वृत्त पर खींची गई स्पर्श रेखाएँ हैं।
इसलिए $PR = PQ [$चूंकि एक बाहरी बिंदु से वृत्त पर खींची गई स्पर्श रेखाएं लंबाई में बराबर होती हैं$]$
$\therefore \angle PRQ = \angle PQR [$समान भुजाओं के सम्मुख कोण बराबर होते हैं$]$
$\triangle PQR$ में
$\angle RQP + \angle QRP + \angle RPQ = 180^\circ [$एक $\triangle$ का कोण योग गुण$]$
$2\angle RQP + 30^\circ = 180^\circ$
$2\angle RQP = 150^\circ$
$\angle RQP = 75^\circ$
इसलिए $\angle RQP = \angle QRP = 75^\circ$
$\angle RQP = \angle RSQ = 75^\circ [$ वैकल्पिक खंड प्रमेय द्वारा $]$
दिया गया, $RS \| PQ$
$\therefore \angle RQP = \angle SRQ = 75^\circ [$वैकल्पिक कोण$]$
$\angle RSQ = \angle SRQ = 75^\circ$
$\therefore \angle QRS$ भी एक समद्विबाहु त्रिभुज है। $[$चूंकि त्रिभुज के समान कोणों की सम्मुख भुजाएँ बराबर होती हैं$।]$
$\angle RSQ + \angle SRQ + \angle RQS = 180^\circ [$एक त्रिभुज के कोणों का योग गुण$]$
$75^\circ + 75^\circ + \angle RQS = 180^\circ$
$150^\circ + \angle RQS = 180^\circ$
$\therefore \angle RQS = 30^\circ$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
केंद्र $O$ और त्रिज्या $5 \ cm$ वाले एक वृत्त के केंद्र से $13 \ cm$ की दूरी पर एक बिंदु $A$ है। $AP$ और $AQ$ क्रमशः बिंदुओं $P$ और $Q$ पर वृत्त की स्पर्श रेखाएँ हैं। यदि लघु चाप $PQ$ पर स्थित एक बिंदु R पर एक स्पर्श रेखा $BC$ ऐसी खींची जाए, जो AP को $B$ और $AQ$ को $C$ पर प्रतिच्छेद करे, तो $\triangle \text{ABC}$ का परिमाप ज्ञात कीजिए।
आकृति में, केंद्रों $O$ और $O^\prime$ वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ $AB$ और $CD$ परस्पर $E$ पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि बिंदु $O, E, O^\prime$ संरेखी हैं।
यदि केंद्र $O$ वाले वृत्त की $AB$ एक जीवा है, $AOC$ एक व्यास है तथा $AT$ बिंदु $A$ पर खींची गई स्पर्श रेखा है, जैसा कि आकृति में दर्शाया गया है। सिद्ध कीजिए कि $\angle BAT = \angle ACB$ है।
केंद्र $O$ वाले किसी वृत्त का $AB$ एक व्यास है और $AC$ एक जीवा इस प्रकार है कि $\angle \text{BAC} = 30^\circ$ है। $C$ पर वृत्त की स्पर्श रेखा बढ़ाई गई $AB$ को बिंदु $D$ पर प्रतिच्छेद करती है। सिद्ध कीजिए कि $BC = BD$ है।
आकृति में, एक बाहरी बिंदु $P$ से केंद्र $O$ वाले वृत्त की एक स्पर्श रेखा $PT$ खींची गई है और एक रेखाखंड $\text{PAB}$ खींचा गया है। $ON$ जीवा $AB$ पर लंब है। सिद्ध कीजिए कि:
एक समकोण त्रिभुज $\text{ABC,}$ जिसमें $\angle B = 90^\circ$ है, $AB$ को व्यास मान कर एक वृत्त खींचा गया है, जो कर्ण $AC$ को $P$ पर प्रतिच्छेद करता है। सिद्ध कीजिए कि $P$ पर वृत्त की स्पर्श रेखा $BC$ को समद्विभाजित करती है।
मान लीजिए कि s उस त्रिभुज ABC के अर्ध-परिमाप को व्यक्त करता है, जिसमें BC = a, CA = b और AB = c है। यदि एक वृत्त भुजाओं BC, CA और AB को क्रमशः D, E और F पर स्पर्श करता है, तो सिद्ध कीजिए कि BD = s - b है।
किसी वृत्त की बिंदु $C$ पर खींची गई स्पर्श रेखा और व्यास $AB$ बढ़ाने पर बिंदु $P$ पर प्रतिच्छेद करते हैं। यदि $\angle \text{PCA} = 110^o$ है, तो $\angle \text{CBA}$ ज्ञात कीजिए $($देखिए आकृति$)$।
यदि त्रिज्या $9 \ cm$ वाले एक वृत्त के अंतर्गत एक समद्विबाहु त्रिभुज $\text{ABC}$ खींचा गया है, जिसमें $AB = AC = 6 \ cm$ है, तो उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
एक बाहरी बिंदु P से केंद्र O वाले वृत्त की दो स्पर्श रेखाएँ PA और PB खींची जाती हैं। वृत्त के एक बिंदु E पर एक स्पर्श रेखा खींची जाती है, जो PA और PB को क्रमशः D और E पर प्रतिच्छेद करती है। यदि PA = 10 cm है, तो त्रिभुज PCD का परिमाप ज्ञात कीजिए।