मान लीजिए कि s उस त्रिभुज ABC के अर्ध-परिमाप को व्यक्त करता है, जिसमें BC = a, CA = b और AB = c है। यदि एक वृत्त भुजाओं BC, CA और AB को क्रमशः D, E और F पर स्पर्श करता है, तो सिद्ध कीजिए कि BD = s - b है।
Exercise-9.4-2
Download our app for free and get startedPlay store
प्रश्न के अनुसार,
s = $\frac{a+b+c}{2}$ $\Rightarrow$ 2s = a + b + c
B एक बाहरी बिंदु है और BD और BF स्पर्श रेखाएँ हैं और एक बाहरी बिंदु से एक वृत्त पर खींची गई स्पर्श रेखाएँ लंबाई में बराबर होती हैं।
तो, BD = BF; वायुसेना = AE; CD = CE ...(i)
s = अर्ध परिमाप = $\frac{\mathrm{AB}+\mathrm{AC}+\mathrm{BC}}{2}$
2s = AB + AC + BC2s = AF + FB + AE + EC + BD + DC
2s = 2AE + 2CE + 2BD ((i) से)
$\Rightarrow$ s = AE + CE + BD
s = AC + BD
$\Rightarrow$ s - b = BD
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    यदि कोई वृत्त एक त्रिभुज ABC की भुजा BC को बिंदु P पर स्पर्श करता है तथा बढ़ाई गई भुजाओं AB और AC को क्रमशः Q और R पर स्पर्श करता है, तो सिद्ध कीजिए कि AQ = $\frac{1}{2}$ (BC + CA + AB) है।
    View Solution
  • 2
    आकृति में, $O$ त्रिज्या $5 \ cm$ वाले वृत्त का केंद्र है, $T$ एक बिंदु इस प्रकार है कि $OT = 13 \ cm$ है तथा $OT$ वृत्त को $E$ पर प्रतिच्छेद करती है। यदि $AB,$ बिंदु $E$ पर वृत्त की एक स्पर्श रेखा है तो $AB$ की लंबाई ज्ञात कीजिए।
    View Solution
  • 3
    एक समकोण त्रिभुज $\text{ABC,}$ जिसमें $\angle B = 90^\circ$ है, $AB$ को व्यास मान कर एक वृत्त खींचा गया है, जो कर्ण $AC$ को $P$ पर प्रतिच्छेद करता है। सिद्ध कीजिए कि $P$ पर वृत्त की स्पर्श रेखा $BC$ को समद्विभाजित करती है।
    View Solution
  • 4
    आकृति में, एक वृत्त पर दो स्पर्श रेखाएँ $PQ$ और $PR$ इस प्रकार खींची गई हैं कि $\angle RPQ = 30^\circ$ है। एक जीवा $RS$ स्पर्श रेखा $PQ$ के समांतर खींची जाती है। $\angle RQS$ ज्ञात कीजिए।
    View Solution
  • 5
    केंद्र $O$ वाले किसी वृत्त का $AB$ एक व्यास है और $AC$ एक जीवा इस प्रकार है कि $\angle \text{BAC} = 30^\circ$ है। $C$ पर वृत्त की स्पर्श रेखा बढ़ाई गई $AB$ को बिंदु $D$ पर प्रतिच्छेद करती है। सिद्ध कीजिए कि $BC = BD$ है।
    View Solution
  • 6
    किसी वृत्त की बिंदु $C$ पर खींची गई स्पर्श रेखा और व्यास $AB$ बढ़ाने पर बिंदु $P$ पर प्रतिच्छेद करते हैं। यदि $\angle \text{PCA} = 110^o$ है, तो $\angle \text{CBA}$ ज्ञात कीजिए $($देखिए आकृति$)$।

    View Solution
  • 7
    आकृति में, एक बाहरी बिंदु $P$ से केंद्र $O$ वाले वृत्त की एक स्पर्श रेखा $PT$ खींची गई है और एक रेखाखंड $\text{PAB}$ खींचा गया है। $ON$ जीवा $AB$ पर लंब है। सिद्ध कीजिए कि:
    1. $\ce{PA \cdot PB = PN^2 - AN^2}$
    2. $\ce{PN^2 - AN^2 = OP^2 - OT^2}$
    3. $\ce{PA \cdot PB = PT^2}$
    View Solution
  • 8
    आकृति में, केंद्रों $O$ और $O^\prime$ वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ $AB$ और $CD$ परस्पर $E$ पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि बिंदु $O, E, O^\prime$ संरेखी हैं।
    View Solution
  • 9
    केंद्रों $O$ और $O^\prime$ वाले तथा क्रमशः त्रिज्याओं $3 \ cm$ और $4 \ cm$ वाले दो वृत्त परस्पर बिंदुओं $P$ और $Q$ पर इस प्रकार प्रतिच्छेद करते हैं कि $OP$ और $O^\prime P$ दोनों वृत्तों की स्पर्श रेखाएँ हैं। उभयनिष्ठ जीवा $PQ$ की लंबाई ज्ञात कीजिए।
    View Solution
  • 10
    यदि केंद्र $O$ वाले वृत्त की $AB$ एक जीवा है, $AOC$ एक व्यास है तथा $AT$ बिंदु $A$ पर खींची गई स्पर्श रेखा है, जैसा कि आकृति में दर्शाया गया है। सिद्ध कीजिए कि $\angle BAT = \angle ACB$ है।
    View Solution