ऐसी दो धन संख्याएँ ज्ञात कीजिए जिनका योग $16$ हो और जिनके घनों का योग निम्नतम हो।
Exercise-6.5-16
Download our app for free and get startedPlay store
मान लीजिए कि एक संख्या $x$ है और दूसरी संख्या $(16 - x)$ है।
इन संख्याओं के घनों का योग $S$ द्वारा दर्शाया जाता है।
तब $S = x^{3 }+ (16 - x)^3$
$x$ के सापेक्ष अवकलन करने पर,
$\frac{d S}{d x} = 3x^{2 }+ 3(16 - x)^2(- 1) = 3x^2- 3 (16 - x)^2$
$\Rightarrow \frac{d^{2} S}{d x^{2}} = 6x + 6(16 - x) = 96$
न्यूनतम मान के लिए $\frac{d S}{d x} = 0$ रखने पर,
$\Rightarrow 3x^2 - 3(16 - x)^2 = 0$
$\Rightarrow dx^{2 }- (256 + x^2 - 32x) = 0$
$\Rightarrow 32x = 256$
$\Rightarrow x = 8$
$\Rightarrow \left(\frac{d^{2} S}{d x^{2}}\right)_{x=8} = 96 > 0$
$\therefore$ द्वितीय अवकलन परीक्षण द्वारा $x = 8, S$ का स्थानीय न्यूनतम मान है। संख्याओं के घनों का योग निम्नतम होगा जब संख्या $8$ और $16 - 8 = 8$ होगी।
अतः आवश्यक संख्याएँ $8$ और $8$ हैं।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    एक कण वक्र $6y = x^{3 }+ 2$ के अनुगत गति कर रहा है। वक्र पर उन बिंदुओं को ज्ञात कीजिए जबकि $x -$ निर्देशांक की तुलना में $y -$ निर्देशांक $8$ गुना तीव्रता से बदल रहा है।
    View Solution
  • 2
    अंतराल ज्ञात कीजिए जिनमें प्रदत्त फलन f(x) = sin 3x, x $\in$ $\left[0, \frac{\pi}{2}\right]$ में
    1. वर्धमान है।
    2. हासमान है।
    View Solution
  • 3
    ऐसी दो धन संख्याएँ $x$ और $y$ ज्ञात कीजिए ताकि $x + y = 60$ और $xy^3$ उच्चतम हो।
    View Solution
  • 4
    $f(x) = x, x \in (0, 1)$ द्वारा प्रदत्त फलन के उच्चतम और निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए।
    View Solution
  • 5
    वक्र $y = x^3$ पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के $y-$निर्देशांक के बराबर है।
    View Solution
  • 6
    सिद्ध कीजिए कि वक्र $x = y^2$ और $xy = k$ एक दूसरे को समकोण$*$ पर काटती है, यदि $8k^{2 }= 1$ है।
    View Solution
  • 7
    निम्नलिखित में से किस अंतराल में $y = x^2 e^{-x}$ वर्धमान है?
    View Solution
  • 8
    $f(x) = 2x^3 - 6x^2 + 6x + 5$ द्वारा प्रदत्त फलन $f$ के स्थानीय उच्चतम और स्थानीय निम्नतम के सभी बिंदु ज्ञात कीजिए।
    View Solution
  • 9
    $f(x) = x^{3 }- 6x^{2 }+ 9x + 15$ के स्थानीय उच्चतम या निम्नतम, यदि कोई हों तो, ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम मान, जैसी स्थिति हो, भी ज्ञात कीजिए।
    View Solution
  • 10
    वक्र $y = \sqrt{4 x-3}-1$ पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता $\frac{2}{3}$ है।
    View Solution