दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में 10 काली और 8 लाल गेदें हैं, तो प्रायिकता ज्ञात कीजिए।
दोनों गेंदे लाल हों
प्रथम काली एवं दूसरी लाल हो
एक काली तथा दूसरी लाल हो।
Exercise-13.2-13
Download our app for free and get started
गेंदों की कुल संख्या = 18, लाल गेदों की संख्या = 8 तथा काली गेंदों की संख्या = 10 $\therefore$ लाल गेंद निकालने की प्रायिकता = = $\frac{8}{18}$ इसी प्रकार काली गेंद निकालने की प्रायिकता = = $\frac{10}{18}$
P (दोनों गेंद लाल हों) = P (पहली गेंद निकालने में एक लाल गेंद निकली हो और पुनः दूसरी गेंद निकालने में भी लाल गेंद ही निकली हो) = $\frac{8}{18}$$ \times$$ \frac{8}{18}$ $=\frac{16}{81}$
P (प्रथम काली तथा दूसरी गेंद लाल निकालने की प्रायिकता) = $ \frac{10}{18} $$\times \frac{8}{18}$$=\frac{20}{81}$
P(एक काली तथा दूसरी लाल गेंद के निकालने की प्रायिकता) = P (प्रथम गेंद काली तथा दूसरी गेंद लाल है) + P (प्रथम गेंद लाल तथा दूसरी गेंद काली है) = $ \frac{10}{18}$$ \times \frac{8}{18}$$+\frac{8}{18} \times $$\frac{10}{18}$$=\frac{20}{81}$$+\frac{20}{81}$$=\frac{40}{81}$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
दो दल एक निगम के निर्देशक मंडल में स्थान पाने की प्रतिस्पर्धा में हैं। पहले तथा दूसरे दल के जीतने की प्रायिकताएँ क्रमशः $0.6$ तथा $0.4$ हैं। इसके अतिरिक्त यदि पहला दल जीतता है तो एक नए उत्पाद के प्रारम्भ होने की प्रायिकता $0.7$ है और यदि दूसरा दल जीतता है, तो इस बात की संगत प्रायिकता $0.3$ है। इसकी प्रायिकता ज्ञात कीजिए कि नया उत्पादन दूसरे दल द्वारा प्रारम्भ किया गया था।
मान लीजिए किसी रोगी को दिल का दौरा पड़ने का संयोग $40\%$ है। यह मान लिया जाता है कि ध्यान और योग विधि दिल का दौरा पड़ने के खतरे को $30\%$ कम कर देता है और दवा द्वारा खतरे को $25\%$ कम किया जा सकता है। किसी भी समय रोगी इन दोनों में से किसी एक विकल्प का चयन करता है। यह दिया गया है कि उपरोक्त विकल्पों से किसी एक का चुनाव करने वाले रोगियों से यादृच्छया चुना गया रोगी दिल के दौरे से ग्रसित हो जाता है। रोगी द्वारा ध्यान और योग विधि का उपयोग किए जाने की प्रायिकता ज्ञात कीजिए।
तीन अभिन्न डिब्बे $I, II$ और $III$ दिए गए हैं जहाँ प्रत्येक में दो सिक्के हैं। डिब्बे $I$ में दोनों सिक्के सोने के है, डिब्बे $II$ में दोनों सिक्के चाँदी के हैं और डिब्बे $III$ में एक सोने और एक चाँदी का सिक्का है। एक व्यक्ति यादृच्छया एक डिब्बा चुनता है और उसमें से यादृच्छया एक सिक्का निकालता है। यदि सिक्का सोने का है, तो इस बात की क्या प्रायिकता है कि डिब्बे में दूसरा सिक्का भी सोने का ही है$?$
ताश के 52 पत्तों की एक भली-भाँति फेंटी गई गड्डी में से दो पत्ते उत्तरोत्तर बिना प्रतिस्थापना के (या एक साथ) निकाले जाते हैं। बादशाहों की संख्या का माध्य, प्रसरण व मानक-विचलन ज्ञात कीजिए।
एक बोल्ट बनाने के कारखाने में मशीनें $($यंत्र$) A, B$ और $C$ कुल उत्पादन का क्रमशः $25\%, 35 \%$ और $40\%$ बोल्ट बनाती हैं। इन मशीनों के उत्पादन का क्रमशः $5, 4,$ और $2$ प्रतिशत भाग खराब $($त्रुटिपूर्ण$)$ हैं। बोल्टों के कुल उत्पादन में से एक बोल्ट यादृच्छया निकाला जाता है और वह खराब पाया जाता है। इसकी क्या प्रायिकता है कि यह बोल्ट मशीन $B$ द्वारा बनाया गया है?
मान लीजिए कि कोई लड़की एक पासा उछालती है। यदि उसे $5$ या $6$ की संख्या प्राप्त होती है तो वह एक सिक्के को तीन बार उछालती है और चितो की संख्या नोट करती है। यदि उसे $1, 2, 3$ या $4$ की संख्या प्राप्त होती है, तो वह एक सिक्के को एक बार उछालती है और यह नोट करती है कि उस पर 'चित' या पट प्राप्त हुआ। यदि उसे ठीक एक चित प्राप्त होता है, तो उसके द्वारा उछाले गए पासे पर $1, 2, 3$ या $4$ प्राप्त होने की प्रायिकता क्या है?
एक कक्षा में $15$ छात्र हैं जिनकी आयु $14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19$ और $20$ वर्ष हैं। एक छात्र को इस प्रकार चुना गया कि प्रत्येक छात्र को चुने जाने की संभावना समान है और चुने गए छात्र की आयु $(X)$ को लिखा गया। यादुच्छिक चर $X$ का प्रायिकता बंटन ज्ञात कीजिए। $X$ का माध्य, प्रसरण व मानक विचलन भी ज्ञात कीजिए।