एक भोज्य पदार्थ में कम से कम $80$ मात्रक विटामिन $A$ और $100$ मात्रक खनिज होना चाहिए। दो प्रकार के भोज्य $F_1$ और $F_2$ उपलब्ध हैं। भोज्य $F_1$ की लागत $₹\ 4$प्रति मात्रक और $F_2$ की लागत $₹\ 5$ प्रति मात्रक है। भोज्य $F_1$ की एक इकाई में कम से कम $3$ मात्रक विटामिन $A$ और $4$ मात्रक खनिज है। $F_2$ की प्रति इकाई में कम से कम $6$ मात्रक विटामिन $A$ और $3$ मात्रक खनिज हैं। इसको एक रैखिक प्रोग्रामन समस्या के रूप में सूत्रबद्ध कीजिए। उस आहार का न्यूनतम मूल्य ज्ञात कीजिए, जिसमें इन दो भोज्यों का मिश्रण है और उसमें न्यूनतम पोषक तत्व हैं।
Exercise-12.2-9
Download our app for free and get startedPlay store
मान लीजिए भोज्य पदार्थ में $F_1$ भोज्य $x$ इकाई तथा $F_2$ भोजय $y$ इकाई है, तब निम्न तालिका प्राप्त होती है।
प्रकार संख्या विटामिन $A$
$($प्रति मात्रक$)$
खनिज
$($प्रति मात्रक$)$
व्यगत $(₹$ में$)$
$F_1$ $x$ $3x$ $4x$ $4x$
$F_2$ $y$ $6y$ $3y$ $6y$
कुल $x + y$ $3x + 6y$ $4x + 3y$ $4x + 6y$
$F_1$ भोज्य की लागत $₹\ 4$ प्रति इकाई तथा $F_2$ भोज्य की लागत $₹\ 6$ प्रति इकाई है।
अतः उद्देश्य फलन $Z = 4x + 6y ...(i)$
का निम्नतम मान निम्न व्यवरोधों के अंतर्गत ज्ञात करना है।
$3x + 6y \geq 80 ...(ii)$
$4x + 3y \geq 100 ...(iii)$
$x \geq 0, y \geq 0 ...(iv)$
सर्वप्रथम, रेखा $3x + 6y = 80$ का ग्राफ खींचते हैं।
$x$ $0$ $\frac{80}{3}$
$y$ $\frac{40}{3}$ $0$

$(0, 0)$ असमिका $3x + 6y \geq 80$ में रखने पर,
$3 \times 0 + 6 \times 0 \geq 80 \Rightarrow 0 \geq 80 ($जोकि असत्य है$)$
अतः अर्द्धतल मूलबिंदु के विपरीत ओर है। चूँकि $x, y \geq 0$ है, अंतः सुसंगत क्षेत्र प्रथम चतुर्थांश में स्थित है।
अब, रेखा $4x + 3y = 100$ का ग्राफ खींचते हैं।
$x$ $0$ $25$
$y$ $\frac{100}{3}$ $0$
$(0, 0)$ असमिका $4x + 3y \geq 100$ में रखने पर,
$4 \times 0 + 3 \times 0 \geq 100$
$\Rightarrow 0 \geq 100 ($जोकि असत्य है$)$
अतः अर्द्धतल मूलबिंदु के विपरीत ओर है।
समीकरण $3x + 6y = 80$ तथा $4x + 3y = 100$ को हल करने पर प्रतिच्छेद बिंदु $B(24, \frac{4}{3})$ प्राप्त होता है।
स्पष्ट है कि सुसंगत क्षेत्र अपरिबद्ध है।
इस प्रकार, सुसंगत क्षेत्र के शीर्ष बिंदु $A\left(\frac{80}{3}, 0\right), B\left(24, \frac{4}{3}\right)$ तथा $C\left(0, \frac{100}{3}\right)$ हैं। इन बिंदुओं पर $Z$ का मान निम्न है।
शीर्ष बिंदु $Z = 4x + 6y$
$A\left(\frac{80}{3}, 0\right)$ $\frac{320}{3} = 106.67$
$B\left(24, \frac{4}{3}\right)$ $104 \rightarrow$ निम्नतम
$C\left(0, \frac{100}{3}\right)$ $200$
चूँकि सुसंगत क्षेत्र अपरिबद्ध है, अतः $Z$ का निम्नतम मान $104$ हो भी सकता है और नहीं भी हो सकता है। इसके लिए असमिका $4x + 6y < 104$ या $2x + 3y \leq 52$ का ग्राफ खींचते हैं तथा परीक्षण करते हैं कि प्राप्त अर्द्धतल का सुसंगत क्षेत्र में कोई उभयनिष्ठ बिंदु है या नहीं है। यहाँ, कोई उभयनिष्ठ बिंदु नही है, अतः मिश्रण की निम्नतम लागत $₹\ 104$ है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्या को हल कीजिए:
    निम्न अवरोधों के अंतर्गत Z = 5x + 3y का अधिकतमीकरण कीजिए:
    3x + 5y $\leq$ 15, 5x + 2y $\leq$ 10, x $\geq$ 0, y $\geq$ 0
    View Solution
  • 2
    रेशमा दो प्रकार के भोज्य P और Q को इस प्रकार मिलाना चाहती है कि मिश्रण में विटामिन अवयवों में 8 मात्रक विटामिन A तथा 11 मात्रक विटामिन B हों। भोज्य P की लागत ₹60/kg और भोज्य Q की लागत ₹80/kg है। भोज्य P में 3 मात्रक/kg विटामिन A और 5 मात्रक/kg विटामिन B है जबकि भोज्य Q में 4 मात्रक/kg विटामिन A और 2 मात्रक/kg विटामिन है। मिश्रण की न्यूनतम लागत ज्ञात कीजिए।
    View Solution
  • 3
    दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।
    निम्न अवरोधों के अंतर्गत Z = -x + 2y का अधिकतमीकरण कीजिए:
    x $\geq$ 3, x + y $\geq$ 5, x + 2y $\geq$ 6, y $\geq$ 0
    View Solution
  • 4
    एक कारखाने में दो प्रकार के पेंच A और B बनते हैं। प्रत्येक के निर्माण में दो मशीनों के प्रयोग की आवश्यकता होती है, जिसमें एक स्वचालित और दूसरी हस्तचालित है। एक पैकेट पेंच A के निर्माण में 4 मिनट स्वचालित और 6 मिनट हस्तचालित मशीन, तथा एक पैकेट पेंच B के निर्माण में 6 मिनट स्वचालित और 3 मिनट हस्तचालित मशीन का कार्य होता है। प्रत्येक मशीन किसी भी दिन के लिए अधिकतम 4 घंटे काम के लिए उपलब्ध है। निर्माता पेंच A के प्रत्येक पैकेट पर ₹7 और पेंच B के प्रत्येक पैकेट पर ₹10 का लाभ कमाता है। यह मानते हुए कि कारखाने में निर्मित सभी पेंचों के पैकेट बिक जाते हैं, ज्ञात कीजिए कि प्रतिदिन कितने पैकेट विभिन्न पेंचों के बनाए जाएँ जिससे लाभ अधिकतम हो तथा अधिकतम लाभ ज्ञात कीजिए।
    View Solution
  • 5
    एक उत्पादन के कारखाने में तीन मशीनें I, II और III लगी हैं। मशीनें I और II अधिकतम 12 घंटे तक चलाए जाने की क्षमता रखती है। जबकि मशीन III प्रतिदिन कम से कम 5 घंटे चलना चाहिए। निर्माणकर्ता केवल दो प्रकार के सामान M और N का उत्पादन करता है, जिनमें प्रत्येक के उत्पादन में तीनों मशीनों की आवश्यकता होती है। M और N के प्रत्येक उत्पाद के एक नग उत्पादन में तीनों मशीनों के संगत लगे समय (घंटों में) निम्न लिखित सारणी में दिए हैं।

    उत्पाद मशीन पर लगा समय (घंटों में)
    I II III
    M 1 2 1
    N 2 1 1.25

    वह उत्पाद M पर ₹600 प्रति नग और उत्पाद N पर ₹400 प्रति नग की दर से लाभ कमाती है। मानते हुए कि उसके सभी उत्पाद बिक जाते हैं, जिनका उत्पादन किया गया है, तब ज्ञात कीजिए कि प्रत्येक उत्पाद के कितने नगों का उत्पादन किया जाए, जिससे लाभ का अधिकतमीकरण हो? अधिकतम लाभ क्या होगा?

    View Solution
  • 6
    परिवहन संबंधी समस्या (Transportation Problem) P और Q दो स्थानों पर दो कारखाने स्थापित हैं। इन स्थानों से सामान A, B और C पर स्थित तीन डिपो में भेजे जाते हैं। इन डिपो की साप्ताहिक आवश्यकता क्रमशः 5, 5 और 4 सामान की नग हैं, जब कि P और Q की स्थापित कारखानों की उत्पादन क्षमता 8 और 6 नग हैं।
    प्रति नग परिवहन व्यय निम्न सारणीबद्ध है:

    से/को मूल्य (₹ में)
    A B C
    P 160 100 150
    Q 100 120 100

    प्रत्येक कारखाने से कितने नग सामान प्रत्येक डिपो को भेजा जाए जिससे परिवहन व्यय न्यूनतम हो? न्यूनतम परिवहन व्यय क्या होगा।

    View Solution
  • 7
    एक निर्माता दो प्रकार के खिलौने A और B बनाता है। इस उद्देश्य के लिए निर्माण में तीन मशीनों की आवश्यकता पड़ती है और प्रत्येक प्रकार के खिलौने के निर्माण के लिए लगा समय (मिनटों में) निम्नलिखित है।

    खिलौने के प्रकार मशीन
    I II III
    A 12 18 6
    B 6 0 9

    प्रत्येक मशीन अधिकतम 6 घंटे प्रतिदिन के लिए उपलब्ध है। यदि A प्रकार के खिलौने की बिक्री पर ₹7.50 लाभ और B प्रकार के खिलौने पर ₹5 का लाभ हो तो दर्शाइए कि अधिकतम लाभ कमाने के लिए प्रतिदिन A प्रकार के 15 खिलौने और B प्रकार 30 खिलौने निर्मित होने चाहिए।

    View Solution
  • 8
    दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।
    निम्न अवरोधों के अंतर्गत Z = x + 2y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए:
    x + 2y $\geq$ 100, 2x - y $\leq$ 0, 2x + y $\leq$ 200; x, y $\geq$ 0
    View Solution
  • 9
    (आहार संबंधी समस्या): एक आहार विज्ञानी दो प्रकार के भोज्यों को इस प्रकार मिलाना चाहता है कि मिश्रण में विटामिन A का घटक कम से कम 8 मात्रक और विटामिन C का घटक कम से कम 10 मात्रक हो। भोज्य I में 2 मात्रक विटामिन A प्रति kg और 1 मात्रक विटामिन C प्रति kg है। जबकि भोज्य II में 1 मात्रक विटामिन A प्रति kg और 2 मात्रक विटामिन C प्रति kg है। दिया है कि प्रति kg भोज्य I को खरीदने में ₹50 और प्रति kg भोज्य II को खरीदने में ₹70 लगते हैं। इस प्रकार के भोज्य मिश्रण का न्यूनतम मूल्य ज्ञात कीजिए।
    View Solution
  • 10
    उत्पादन संबंधी समस्या (Manufacturing Problem) एक निर्माणकर्ता कंपनी एक उत्पाद के दो नमूने (प्रतिमान) A और B बनाती है। नमूना A के प्रत्येक नग बनाने के लिए 9 श्रम घंटे और 1 घंटा पॉलिश करने के लिए लगता है जबकि नमूना B के प्रत्येक नग के बनाने में 12 श्रम घंटे तथा पॉलिश करने में 3 श्रम घटों की आवश्यकता होती है। बनाने तथा पॉलिश करने के लिए उपलब्ध अधिकतम श्रम घंटे क्रमशः 180 तथा 30 हैं। कंपनी नमूना A के प्रत्येक नग पर ₹ 8000 तथा नमूना B के प्रत्येक नग पर ₹12000 का लाभ कमाती है। नमूना A और नमूना B के कितने नगों का अधिकतम लाभ कमाने के लिए प्रति सप्ताह निर्माण करना चाहिए? प्रति सप्ताह अधिकतम लाभ क्या है?
    View Solution