ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्या को हल कीजिए:
निम्न अवरोधों के अंतर्गत Z = 5x + 3y का अधिकतमीकरण कीजिए:
3x + 5y $\leq$ 15, 5x + 2y $\leq$ 10, x $\geq$ 0, y $\geq$ 0
Exercise-12.1-3
Download our app for free and get startedPlay store
हमको उद्देश्य फलन
z = 5x + 3y ...(i)
का अधिकतम मान निम्न व्यवरोधों के अंतर्गत ज्ञात करना है।
3x + 5y $\leq$ 15 ...(ii)
5x + 2y $\leq$ 10 ...(iii)
x $\geq$ 0, y $\geq$ 0 ...(iv)
सर्वप्रथम, रेखा 3x + 5y = 15 का ग्राफ खींचते हैं।

x 0 5
y 3 0


(0, 0) असमिका 3x + 5y $\leq$ 15 में रखने पर,
3 $\times$ 0 + 5 $\times$ 0 $\leq$ 15 $\Rightarrow$ 0 $\leq$ 15 (जोकि सत्य है)
अतः अर्द्धतल मूलबिंदु की ओर होगा।
चूँकि x, y $\geq$ 0
अतः सुसंगत क्षेत्र पथम चतुर्थांश में स्थित होगा।
अब, रेखा 5x + 2y = 10 का ग्राफ खींचते हैं।

x 0 2
y 5 0

(0, 0) असमिका 5x + 2y $\leq$ 10 में रखने पर,
5 $\times$ 0 + 2 $\times$ 0 $\leq$ 10 $\Rightarrow$ 0 $\leq$ 10 (जोकि सत्य है)
अतः अर्द्धतल मूलबिंदु की ओर हैं।
समीकरण 3x + 5y = 15 तथा 5x + 2y = 10 को हल करने पर,
x = $\frac{20}{19}$ तथा y = $\frac{45}{19}$ प्राप्त होता हैं।
अतः बिंदु B के निर्देशांक $\left(\frac{20}{19}, \frac{45}{19}\right)$ हैं।
अतः सुसंगत क्षेत्र OABCO है।
इस प्रकार, सुसंगत क्षेत्र के शीर्ष बिंदु O(0, 0), A(2, 0), B$\left(\frac{20}{19}, \frac{45}{19}\right)$ तथा C(0, 3) हैं। इन शीर्ष बिंदुओं पर Z का मान निम्न है।

शीर्ष बिंदु Z = 5x + 3y
O(0, 0) 0
A(2, 0) 10
C(0, 3) 9
$B\left(\frac{20}{19}, \frac{45}{19}\right)$ $\frac{235}{19}$ $\rightarrow$ अधिकतम

अतः Z का अधिकतम मान $\frac{235}{19}$ है जोकि बिंदु $B\left(\frac{20}{19}, \frac{45}{19}\right)$ पर प्राप्त होता है।

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।
    निम्न अवरोधों के अंतर्गत Z = -x + 2y का अधिकतमीकरण कीजिए:
    x $\geq$ 3, x + y $\geq$ 5, x + 2y $\geq$ 6, y $\geq$ 0
    View Solution
  • 2
    एक उत्पादन के कारखाने में तीन मशीनें I, II और III लगी हैं। मशीनें I और II अधिकतम 12 घंटे तक चलाए जाने की क्षमता रखती है। जबकि मशीन III प्रतिदिन कम से कम 5 घंटे चलना चाहिए। निर्माणकर्ता केवल दो प्रकार के सामान M और N का उत्पादन करता है, जिनमें प्रत्येक के उत्पादन में तीनों मशीनों की आवश्यकता होती है। M और N के प्रत्येक उत्पाद के एक नग उत्पादन में तीनों मशीनों के संगत लगे समय (घंटों में) निम्न लिखित सारणी में दिए हैं।

    उत्पाद मशीन पर लगा समय (घंटों में)
    I II III
    M 1 2 1
    N 2 1 1.25

    वह उत्पाद M पर ₹600 प्रति नग और उत्पाद N पर ₹400 प्रति नग की दर से लाभ कमाती है। मानते हुए कि उसके सभी उत्पाद बिक जाते हैं, जिनका उत्पादन किया गया है, तब ज्ञात कीजिए कि प्रत्येक उत्पाद के कितने नगों का उत्पादन किया जाए, जिससे लाभ का अधिकतमीकरण हो? अधिकतम लाभ क्या होगा?

    View Solution
  • 3
    दो प्रकार के उर्वरक $F_1$ और $F_2$ है। $F_1$ में $10\%$ नाइट्रोजन और $6\%$ फास्फोरिक अम्ल है। तथा $F_2$ में $5\%$ नाइट्रोजन तथा $10\%$ फास्फोरिक अम्ल है। मिट्टी की स्थितिओं का परीक्षण करने के पश्चात् एक किसान पाता है कि उसे अपनी फसल के लिए $14 \ kg$ नाइट्रोजन और $14 \ kg$ फास्फोरिक अम्ल की आवश्यकता है। यदि $F_1$ की कीमत $₹\ 6/ kg$ और $F_2$ की कीमत $₹\ 5/ kg$ है, प्रत्येक प्रकार का कितना उर्वरक उपयोग के लिए चाहिए ताकि न्यूनतम मूल्य पर वांछित पोषक तत्व मिल सके। न्यूनतम लागत क्या है।
    View Solution
  • 4
    एक निर्माता दो प्रकार के खिलौने A और B बनाता है। इस उद्देश्य के लिए निर्माण में तीन मशीनों की आवश्यकता पड़ती है और प्रत्येक प्रकार के खिलौने के निर्माण के लिए लगा समय (मिनटों में) निम्नलिखित है।

    खिलौने के प्रकार मशीन
    I II III
    A 12 18 6
    B 6 0 9

    प्रत्येक मशीन अधिकतम 6 घंटे प्रतिदिन के लिए उपलब्ध है। यदि A प्रकार के खिलौने की बिक्री पर ₹7.50 लाभ और B प्रकार के खिलौने पर ₹5 का लाभ हो तो दर्शाइए कि अधिकतम लाभ कमाने के लिए प्रतिदिन A प्रकार के 15 खिलौने और B प्रकार 30 खिलौने निर्मित होने चाहिए।

    View Solution
  • 5
    (आहार समस्या) एक आहारविद् दो भोज्यों P और Q का उपयोग करते हुए एक विशेष आहार तैयार करता है। भोज्य P का प्रत्येक पैकेट (जिसमें 30 ग्राम अंतर्विष्ट है) में कैल्शियम के 12 मात्रक लौह तत्व के 4 मात्रक, कोलेस्ट्रोल के 6 मात्रक और विटामिन A के 6 मात्रक अंतर्विष्ट हैं जबकि उसी मात्र के भोज्य Q के पैकेट में कैल्शियम तत्व के 3 मात्रक, लौह तत्व के 20 मात्रक, कोलेस्ट्रोल के 4 मात्रक और विटामिन A के 3 मात्रक अंतर्विष्ट है। आहार में कम से कम 240 मात्रक कैल्शियम, लौह तत्व के कम से कम 460 मात्रक, और कोलेस्ट्रोल के अधिक से अधिक 300 मात्रक अपेक्षित हैं। प्रत्येक भोज्य के कितने पैकेटों का उपयोग किया जाए ताकि आहार में विटामिन A की मात्रा का न्यूनतम किया जा सके।
    View Solution
  • 6
    ग्राफ़ीय विधि से रैखिक प्रोग्रामन समस्या को हल कीजिए:
    निम्न अवरोधों के अंतर्गत Z = 3x + 2y का न्यूनतमीकरण कीजिए:
    x + 2y $\leq$ 10, 3x + y $\leq$ 15, x, y $\geq$ 0
    View Solution
  • 7
    एक फल उत्पादक अपने बाग में दो प्रकार के खादों P ब्रांड और Q ब्रांड का उपयोग कर सकता है। मिश्रण के प्रत्येक थैले में नाइट्रोजन, फास्फोरिक अम्ल, पोटाश और क्लोरीन की मात्रा (kg में) सारणी में दिया गया है। परीक्षण संकेत देते है कि बाग को कम से कम 250 kg फास्फोरिक अम्ल, कम से कम 270 kg पोटाश और क्लोरीन की अधिक से अधिक 310 kg की आवश्यकता है।
    यदि उत्पादक बाग के लिए मिलाई जाने वाली नाइट्रोजन की मात्रा का न्यूनतमीकरण करना चाहता है तथा, प्रत्येक मिश्रण के कितने थैलों का उपयोग होना चाहिए? मिलाई जाने वाली नाइट्रोजन की निम्नतम मात्रा क्या है?
    kg प्रति थैला
      ब्राँड P ब्राँड Q
    नाइट्रोजन 3 3.5
    फास्फोरिक अम्ल 1 2
    पोटाश 3 1.5
    क्लोरीन 1.5 2
    View Solution
  • 8
    रेशमा दो प्रकार के भोज्य P और Q को इस प्रकार मिलाना चाहती है कि मिश्रण में विटामिन अवयवों में 8 मात्रक विटामिन A तथा 11 मात्रक विटामिन B हों। भोज्य P की लागत ₹60/kg और भोज्य Q की लागत ₹80/kg है। भोज्य P में 3 मात्रक/kg विटामिन A और 5 मात्रक/kg विटामिन B है जबकि भोज्य Q में 4 मात्रक/kg विटामिन A और 2 मात्रक/kg विटामिन है। मिश्रण की न्यूनतम लागत ज्ञात कीजिए।
    View Solution
  • 9
    एक भोज्य पदार्थ में कम से कम $80$ मात्रक विटामिन $A$ और $100$ मात्रक खनिज होना चाहिए। दो प्रकार के भोज्य $F_1$ और $F_2$ उपलब्ध हैं। भोज्य $F_1$ की लागत $₹\ 4$प्रति मात्रक और $F_2$ की लागत $₹\ 5$ प्रति मात्रक है। भोज्य $F_1$ की एक इकाई में कम से कम $3$ मात्रक विटामिन $A$ और $4$ मात्रक खनिज है। $F_2$ की प्रति इकाई में कम से कम $6$ मात्रक विटामिन $A$ और $3$ मात्रक खनिज हैं। इसको एक रैखिक प्रोग्रामन समस्या के रूप में सूत्रबद्ध कीजिए। उस आहार का न्यूनतम मूल्य ज्ञात कीजिए, जिसमें इन दो भोज्यों का मिश्रण है और उसमें न्यूनतम पोषक तत्व हैं।
    View Solution
  • 10
    ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्या को हल कीजिए:
    निम्न अवरोधों के अंतर्गत Z = 3x + 5y का न्यूनतमीकरण कीजिए:
    x + 3y $\geq$ 3, x + y $\geq$ 2, x, y $\geq$ 0
    View Solution