एक गोलाकार काँच के बर्तन की एक बेलन के आकार की गर्दन है जिसकी लंबाई $8 \ cm$ है और व्यास $2 \ cm$ है जबकि गोलाकार भाग का व्यास $8.5 \ cm$ है। इसमें भरे जा सकने वाली पानी की मात्रा माप कर, एक बच्चे ने यह ज्ञात किया कि इस बर्तन का आयतन $345 \ cm^3$ है। जाँच कीजिए कि उस बच्चे का उत्तर सही है या नहीं, यह मानते हुए कि उपरोक्त मापन आंतरिक मापन है और $\pi = 3.14।$
Exercise-12.2-8
Download our app for free and get startedPlay store

बेलनाकार भाग का आयतन $= \pi r^{2} h=3.14 \times 1^{2} \times 8 [\because$ त्रिज्या $= \frac{2}{2} = 1 \ cm,$ ऊँचाई $(h) = 8$ सेमी$.]$
$= \frac{314}{100} \times 8$ सेमी.$^3$
गोलाकार भाग का आयतन $= \frac{4}{3} \pi r_{1}^{3} [$यहाँ, $r_1 = \frac{8.5}{2}$ सेमी.$]$
$= \frac{4}{3} \times \frac{314}{100} \times \frac{85}{20} \times \frac{85}{20} \times \frac{85}{20}$ सेमी.$^3$
गोलाकार बर्तन का कुल आयतन $= \left[\frac{314}{100} \times 8\right]+\left[\frac{314}{100} \times \frac{4}{3} \times \frac{85 \times 85 \times 85}{8000}\right]$
$= \frac{314}{100}\left[8+\frac{4 \times 85 \times 85 \times 85}{24000}\right]$ सेमी.$^3$
$= \frac{314}{100}\left[8+\frac{614125}{6000}\right]$ सेमी.$^3$
$= \frac{314}{100}\left[\frac{48000+614125}{6000}\right]$ सेमी.$^3 = \frac{314}{100}\left[\frac{662125}{6000}\right]$ सेमी.$^3$
$= \frac{314}{100} \times \frac{5297}{48}$ सेमी.$^3 = \frac{157}{100} \times \frac{5297}{24}=\frac{831629}{2400}$ सेमी.$^3$
$= 346.51$ सेमी.$^3 ($लगभग$)$
$\Rightarrow$ बर्तन में पानी का आयतन $= 346.51$ सेमी.$^3$
चूंकि बच्चे द्वारा ज्ञात किया गया पानी का आयतन $= 345$ सेमी.$^3$
$\therefore$ बच्चे का उत्तर सही नहीं है।
$\Rightarrow$ सही उत्तर है $346.51$ सेमी.$^3$​​​​​​​
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    लकड़ी का एक खिलौना रॉकेट $($rocket$)$ एक शंकु के आकार का है जो एक बेलन पर अध्यारोपित है, जैसाकि आकृति में दर्शाया गया है। संपूर्ण रॉकेट की ऊँचाई $26 \ cm$ है, जबकि शंक्वाकार भाग की ऊँचाई $6 \ cm$ है। शंक्वाकार के भाग के आधार का व्यास $5 \ cm$ और बेलनाकार भाग के आधार का व्यास $3 \ cm$ है। यदि शंक्वाकार भाग पर नारंगी रंग किया जाना है और बेलनाकार भाग पर पीला रंग किया जाना है, तो प्रत्येक रंग द्वारा रॉकेट का रँगे जाने वाले भाग का क्षेत्रफल ज्ञात कीजिए। $(\pi = 3.14$ लीजिए$)$
    View Solution
  • 2
    एक इंजीनियरिंग के विद्यार्थी रचेल से एक पतली एल्यूमीनियम की शीट का प्रयोग करते हुए एक मॉडल बनाने को कहा गया जो एक ऐसे बेलन के आकार का हो जिसके दोनों सिरों पर दो शंकु जुड़े हुए हों। इस मॉडल का व्यास $3 \ cm$ है और इसकी लंबाई $12 \ cm$ है। यदि प्रत्येक शंकु की ऊँचाई $2\ cm$ हो तो रचेल द्वारा बनाए गए मॉडल में अंतर्विष्ट हवा का आयतन ज्ञात कीजिए। $($यह मान लीजिए कि मॉडल की आंतरिक और बाहरी विमाएँ लगभग बराबर हैं$।)$
    View Solution
  • 3
    एक ठोस में, ऊँचाई $120 \ cm$ और त्रिज्या $60 \ cm$ वाला एक शंकु सम्मिलित है, जो $60 \ cm$ त्रिज्या वाले एक अर्धगोले पर आरोपित है। इस ठोस को पानी से भरे हुए एक लंब वृत्तीय बेलन में इस प्रकार सीधा डाल दिया जाता है कि यह बेलन की तली को स्पर्श करे। यदि बेलन की त्रिज्या $60 \ cm$ है और ऊँचाई $180 \ cm$ है तो बेलन में शेष बचे पानी का आयतन ज्ञात कीजिए। $(\pi = \frac{22}{7})$
    View Solution
  • 4
    आकृति में दर्शाया गया सजावट के लिए प्रयोग होने वाला ब्लॉक दो ठोसों से मिलकर बना है। इनमें से एक घन है और दूसरा अर्धगोला है। इस ब्लॉक $($block$)$ का आधार $5 \ cm$ कोर या किनारे $($edge$)$ वाला एक घन है और उसके ऊपर लगे हुए अर्धगोले का व्यास $4.2 \ cm$ है। इस ब्लॉक का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7}$ लीजिए।$)$​​​​​​​
    View Solution
  • 5
    एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई $8 \ cm$ है और इसके ऊपरी सिरे $($जो खुला हुआ है$)$ की त्रिज्या $5 \ cm$ है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ गोलियाँ जिनमें प्रत्येक $0.5 \ cm$ त्रिज्या वाला एक गोला है, डाली जाती हैं, तो इसमें से भरे हुए पानी का एक चौथाई भाग बाहर निकल जाता है। बर्तन में डाली गई सीसे की गोलियों की संख्या ज्ञात कीजिए।
    View Solution
  • 6
    दवा का एक कैप्सूल $($capsule$)$ एक बेलन के आकार का है जिसके दोनों सिरों पर एक$-$एक अर्धगोला लगा हुआ है $($देखिए आकृति$)।$ पूरे कैप्सूल की लंबाई $14\ mm$ है और उसका व्यास $5 \ mm$ है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
    View Solution
  • 7
    एक ठोस एक अर्धगोले पर खड़े एक शंकु के आकार का है जिनकी त्रिज्याएँ $1 \ cm$ हैं तथा शंकु की ऊँचाई उसकी त्रिज्या के बराबर है। इस ठोस का आयतन $\pi$ के पदों में ज्ञात कीजिए। $(\pi=\frac{22}{7})$
    View Solution
  • 8
    एक गुलाबजामुन में उसके आयतन की लगभग $30 \%$ चीनी की चाशनी होती है। $45$ गुलाबजामुनों में लगभग कितनी चाशनी होगी, यदि प्रत्येक गुलाबजामुन एक बेलन के आकार का है, जिसके दोनों सिरे अर्धगोलाकार हैं तथा इसकी लंबाई $5 \ cm$ और व्यास $2.8 \ cm$ है $($देखिए आकृति$)।$
    View Solution
  • 9
    एक कलमदान घनाभ के आकार की एक लकड़ी से बना है जिसमें कलम रखने के लिए चार शंक्वाकार गड्ढे बने हुए हैं। घनाभ की विमाएँ $15 \ cm \times 10 \ cm \times 3.5 \ cm$ हैं। प्रत्येक गड्ढे की त्रिज्या $0.5 \ cm$ है और गहराई $1.4 \ cm$ है। पूरे कलमदान में लकड़ी का आयतन ज्ञात कीजिए $($देखिए आकृति$)$।
    View Solution
  • 10
    लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसाकि आकृति में दर्शाया गया है। यदि बेलन की ऊँचाई $10 \ cm$ है और आधार की त्रिज्या $3.5 \ cm$ है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
    View Solution