एक ठोस एक अर्धगोले पर खड़े एक शंकु के आकार का है जिनकी त्रिज्याएँ $1 \ cm$ हैं तथा शंकु की ऊँचाई उसकी त्रिज्या के बराबर है। इस ठोस का आयतन $\pi$ के पदों में ज्ञात कीजिए। $(\pi=\frac{22}{7})$
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक गुलाबजामुन में उसके आयतन की लगभग $30 \%$ चीनी की चाशनी होती है। $45$ गुलाबजामुनों में लगभग कितनी चाशनी होगी, यदि प्रत्येक गुलाबजामुन एक बेलन के आकार का है, जिसके दोनों सिरे अर्धगोलाकार हैं तथा इसकी लंबाई $5 \ cm$ और व्यास $2.8 \ cm$ है $($देखिए आकृति$)।$
ऊँचाई $220 \ cm$ और आधार व्यास $24 \ cm$ वाले एक बेलन, जिस पर ऊँचाई $60 \ cm$ और त्रिज्या $8 \ cm$ वाला एक अन्य बेलन आरोपित है, से लोहे का एक स्तंभ बना है। इस स्तंभ का द्रव्यमान ज्ञात कीजिए, जबकि दिया है $1 \ cm^3$ लोहे का द्रव्यमान लगभग $8 g$ होता है। $(\pi = 3.14$ लीजिए।$)$
एक ठोस में, ऊँचाई $120 \ cm$ और त्रिज्या $60 \ cm$ वाला एक शंकु सम्मिलित है, जो $60 \ cm$ त्रिज्या वाले एक अर्धगोले पर आरोपित है। इस ठोस को पानी से भरे हुए एक लंब वृत्तीय बेलन में इस प्रकार सीधा डाल दिया जाता है कि यह बेलन की तली को स्पर्श करे। यदि बेलन की त्रिज्या $60 \ cm$ है और ऊँचाई $180 \ cm$ है तो बेलन में शेष बचे पानी का आयतन ज्ञात कीजिए। $(\pi = \frac{22}{7})$
आकृति में दर्शाया गया सजावट के लिए प्रयोग होने वाला ब्लॉक दो ठोसों से मिलकर बना है। इनमें से एक घन है और दूसरा अर्धगोला है। इस ब्लॉक $($block$)$ का आधार $5 \ cm$ कोर या किनारे $($edge$)$ वाला एक घन है और उसके ऊपर लगे हुए अर्धगोले का व्यास $4.2 \ cm$ है। इस ब्लॉक का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7}$ लीजिए।$)$
एक गोलाकार काँच के बर्तन की एक बेलन के आकार की गर्दन है जिसकी लंबाई $8 \ cm$ है और व्यास $2 \ cm$ है जबकि गोलाकार भाग का व्यास $8.5 \ cm$ है। इसमें भरे जा सकने वाली पानी की मात्रा माप कर, एक बच्चे ने यह ज्ञात किया कि इस बर्तन का आयतन $345 \ cm^3$ है। जाँच कीजिए कि उस बच्चे का उत्तर सही है या नहीं, यह मानते हुए कि उपरोक्त मापन आंतरिक मापन है और $\pi = 3.14।$
एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई $8 \ cm$ है और इसके ऊपरी सिरे $($जो खुला हुआ है$)$ की त्रिज्या $5 \ cm$ है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ गोलियाँ जिनमें प्रत्येक $0.5 \ cm$ त्रिज्या वाला एक गोला है, डाली जाती हैं, तो इसमें से भरे हुए पानी का एक चौथाई भाग बाहर निकल जाता है। बर्तन में डाली गई सीसे की गोलियों की संख्या ज्ञात कीजिए।
दवा का एक कैप्सूल $($capsule$)$ एक बेलन के आकार का है जिसके दोनों सिरों पर एक$-$एक अर्धगोला लगा हुआ है $($देखिए आकृति$)।$ पूरे कैप्सूल की लंबाई $14\ mm$ है और उसका व्यास $5 \ mm$ है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसाकि आकृति में दर्शाया गया है। यदि बेलन की ऊँचाई $10 \ cm$ है और आधार की त्रिज्या $3.5 \ cm$ है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
एक कलमदान घनाभ के आकार की एक लकड़ी से बना है जिसमें कलम रखने के लिए चार शंक्वाकार गड्ढे बने हुए हैं। घनाभ की विमाएँ $15 \ cm \times 10 \ cm \times 3.5 \ cm$ हैं। प्रत्येक गड्ढे की त्रिज्या $0.5 \ cm$ है और गहराई $1.4 \ cm$ है। पूरे कलमदान में लकड़ी का आयतन ज्ञात कीजिए $($देखिए आकृति$)$।
ऊँचाई $2.4 \ cm$ और व्यास $1.4 \ cm$ वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल $($cavity$)$ काट लिया जाता है। शेष बचे ठोस का निकटतम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi = \frac{22}{7})$